2024 Annual Compliance Report

This document is the property of Murrumbidgee Irrigation Limited. The data contained in this Annual Compliance Report is for the sole purpose of meeting MI's licence compliance reporting requirements. MI does not guarantee the accuracy, reliability or suitability of excerpts of this data for any other purpose.

© Murrumbidgee Irrigation Limited (MI)

This report is copyright. Apart from use under the *Copyright Act 1968* (Cth), no part of this work may be reproduced by any process without prior written permission from Murrumbidgee Irrigation Limited.

Table of contents

1	Stateme	ent of compliance	7
2	Plan of	operations and works	9
3	Reporti	ng on water management	12
	3.1	Climate conditions	12
	3.2	Calibration report for Main Canal and Sturt Canal AFFRA units	12
	3.3	Diversions and water allocation	14
	3.4	Environmental diversions	15
	3.5	Water discharged from area of operations	16
	3.6	Water balance	17
4	Water u	se	18
	4.1	Crop statistics	18
	4.2	Irrigation intensity	20
5	Salinity	and salt load	22
	5.1	Extracted salt load	22
	5.2	Discharged salt load	23
	5.3	Salt load summary	26
6	Ground	water conditions	26
	6.1	Groundwater monitoring and reporting	27
	6.2	Groundwater salinity	30
	6.3	Shallow Shepparton Formation	31
	6.4	Deep Shepparton Formation	37
	6.5	Calivil Formation	43
7	Tubewe	lls	49
8	New me	easures to limit groundwater recharge and discharge of salt	49
9	Environ	mental protection and management	49
	9.1	Discharge of noxious aquatic weeds	49
	9.2	Discharge of blue-green algae	49
10	Stateme	ent of compliance	49
11	EPL mo	nitoring and reporting	50
	11.1	System performance	51
	11.2	Water quality monitoring	51
	11.3	Summary of events	56
12	Propose	ed changes	56
Att	achment	A: Significant events for 2023/24	57
Att	achment	B: VENTIA flow, EC, and salt load monitoring financial year report	58

List of figures

Figure 1 - Murrumbidgee Irrigation's Area of Operations	10
Figure 2 - Location of authorised supply works and licence discharge points	11
Figure 3 – Comparison of total water deliveries to major crop types	20
Figure 4 - Distribution of irrigation intensity across the MIA	21
Figure 5 - Location of piezometers and tubewells in the MIA 2023/24	
Figure 6 - Rainfall and evapotranspiration data FYE 2006-2024 - Griffith weather station	
Figure 7 - Shallow Shepparton Formation – depth to water table 2023	32
Figure 8 - Shallow Shepparton Formation – depth to water table 2022	33
Figure 9 - Shallow Shepparton Formation – depth to water table 2021	34
Figure 10 - Shallow Shepparton Formation – depth to water table 2020	35
Figure 11 - Shallow Shepparton Formation – depth to water table 2012	
Figure 12 - Deep Shepparton Formation - depth to water table 2023	
Figure 13 - Deep Shepparton Formation - depth to water table 2022	
Figure 14 - Deep Shepparton Formation - depth to water table 2021	40
Figure 15 - Deep Shepparton Formation - depth to water table 2020	41
Figure 16 - Deep Shepparton Formation - depth to water table 2012	42
Figure 17 - Calivil Formation – depth to water table 2023	44
Figure 18 - Calivil Formation – depth to water table 2022	45
Figure 19 - Calivil Formation – depth to water table 2021	46
Figure 20 - Calivil Formation – depth to water table 2020	47
Figure 21 - Calivil Formation – depth to water table 2012	48
Figure 22 - Comparison of irrigation drainage water notification trends	55

List of tables

Table 1 - Combined Approval (40CA403245) reporting summary	8
Table 2 - Significant event notifications (S91i events)	8
Table 3 - Local weather station rainfall and ETo	12
Table 4 - Main Canal at NARREG (410127) calibration report	13
Table 5 – Sturt Canal at STURT (410129) calibration report	13
Table 6 – Monthly summaries of water diversions delivered to customers, 2023/24	14
Table 7 - Water allocation, total diversions, and deliveries 2023/24 compared to previous years	15
Table 8 – Diversions debited to Water Access Licences groups	15
Table 9 - Environmental water diversions for 2023/24	15
Table 10 – Monthly discharge volumes (ML) recorded at monitoring points	16
Table 11 – Monthly discharge volumes (ML) recorded at monitoring points	17

Table 12 - Annual water balance as at 1 July 2024 and prior years	17
Table 13 – Summary of water deliveries for major crop groupings 2023/24	18
Table 14 - Total deliveries to major crop types 2023/24 compared to previous years	19
Table 15 – Total extracted salt loads for 2023/24	22
Table 16 - Extracted salt load (t) for 2023/24 compared to prior years	23
Table 17 - Monthly summary of flow, EC, and salt loads at monitoring points for 2023/24	23
Table 18 – Discharged salt load 2023/24 compared to prior years	26
Table 19 – Salt load summary for 2023/24	26
Table 20 – Groundwater piezometer status summary 2023	27
Table 21 - Number and percent of total piezometers readings within each depth range	29
Table 22 – Change in groundwater depth	29
Table 23 - EPL 4651 monitoring and reporting requirements	50
Table 24 - Total water volumes	51
Table 25 - Monitoring results for Point 4 – LAG	52
Table 26 - Monitoring results for Point 5 – GMSRR	52
Table 27 - Monitoring results for Point 6 – YMS	53
Table 28 - Monitoring results for Point 7 – ROCUDG	53
Table 29 - Monitoring results for Point 15 – MIRFLD	54
Table 30 - Summary of events 2023/24	56
Table 31 - Summary of significant events 2023/24	57

Abbreviations

AFFRA	Acoustic Flowmeter For Remote Areas				
ACR	Annual Compliance Report				
ANZECC	Australian and New Zealand Environment and Conservation Council				
BBS	Barren Box Storage				
CSIRO	Commonwealth Scientific Investigation and Research Organisation				
DPHI	NSW Department of Planning, Housing and Infrastructure				
DQP	Duly Qualified Person				
EC	Electrical Conductivity				
DCCEEW	Department of Climate Change, Energy, Environment and Water				
EPA	Environment Protection Authority				
EPL	Environment Protection Licence				
ETo	Evapotranspiration (crop reference)				
GIS	Geographic Information System				
GMSRR	EPL Point 5 - Gogeldrie Main Southern Drain River Road				
ha	Hectare(s)				
LAG	EPL Point 4 - Gogeldrie Main Drain at Gooragool Lagoon				
LTA	Long-term average				
MI	Murrumbidgee Irrigation Limited				
MIA	Murrumbidgee Irrigation Area				
MIRFLD	EPL Point 15 - Mirrool Creek Floodway Wyvern Station				
ML	Megalitre				
NARREG	Narrandera Regular				
NATA	National Association of Testing Authorities				
NRAR	Natural Resources Access Regulator				
ROCUDG	EPL Point 7 - Point Cudgel Creek Roaches Escape				
SOP	Standard Operating Procedure				
SWL	Standing Water Level				
t	tonnes				
µS/cm	micro siemens per centimetre				
µg/L	micrograms per litre				
WAL	Water Access Licence				
YMS	EPL Point 6 - Yanco Main Southern Drain				

Preface

The Annual Compliance Report for the financial year 2023/24 has been prepared to meet the reporting requirements of the licences held by Murrumbidgee Irrigation (**MI**).

MI operates under a Combined Water Supply Work Approval and Water Use Approval 40CA403245 (Combined Approval) issued by the NSW Department of Climate Change, Energy, Environment and Water (DCCEEW) and regulated by the Natural Resources Access Regulator (**NRAR**). MI also holds an Environment Protection Licence (**EPL**) 4651 issued by the NSW Environment Protection Authority (**EPA**).

MI is committed to achieving organisational excellence through operating safely, efficiently, and effectively, all of which contribute towards the measure of MI's compliance performance.

COMBINED WATER SUPPLY WORK APPROVAL AND WATER USE APPROVAL

1 Statement of compliance

At the time of the creation of this Annual Compliance Report (ACR), MI was awaiting a formal response from NRAR regarding the submission of MI's 2022/23 Annual Compliance Report. MI has therefore not made any changes to the style of reporting from the prior reporting period. Any future comments received from NRAR will be incorporated into future ACRs.

MI has met the conditions of the Monitoring and Reporting Plan dated 16 March 2018 for our Combined Approval in 2023/24 except for condition 2.17 Groundwater and Tubewells. MI is working with the Department on this condition. The compliance requirements are cross referenced within this report and listed in **Table 1**.

MI has quality assurance and control procedures for data integrity and to ensure that all compliance obligations are met. This includes using a NATA accredited laboratory for water sample analysis and contracting an external hydrological service provider to manage and maintain our licensed supply and discharge points.

Table 1 - Combined Approval (40CA403245) reporting summary

Approval section	Condition	Report section
Submission of annual compliance report	1	This report
Plans of thread of operations,	2.1	
authorised works, monitoring sites and — water management infrastructure	2.2	— 2. Plan of operations and works
Statement of compliance	2.3	1. Statement of compliance
	2.4	
-	2.5	Sections 3 - 7
Presentation of data and analyses	2.6	_
-	2.7	Provided via email with report
-	2.8	1. Statement of compliance
New measures to limit groundwater recharge and discharge of salt	2.9	8. New measures to limit groundwater recharge and discharge of salt
	2.10	3.3 Diversions and water allocation
	2.11	3.5 Water discharged from area of operations
Reporting on water management	2.12	3.6 Water balance
	2.13 (a) (b)	3.1 Climate conditions
	2.13 (c) – (i)	4. Water use
	2.14	
Reporting on salinity and salt load	2.15	5. Salinity and salt load
	2.16	_
Reporting on groundwater conditions	2.17	6. Groundwater conditions
Discharge of noxious aquatic weeds	5	9.1 Discharge of noxious aquatic weeds
Discharge of blue green algae	6	9.2 Discharge of blue-green algae

Table 2 outlines the number of significant events that occurred in 2023/24 that required notification to the Minister. The significant events are detailed in **Attachment A:** Significant events for 2023/24.

When a significant event occurs MI lodge an S91i - self reporting form and engages a Duly Qualified Person (DQP) to investigate and rectify the issue. A Certification of Validation is completed and an S91 completion form is lodged with the relevant supporting documentation.

Table 2 - Significant event notifications (S91i events)

Year	Number of significant events
2023/24	1

MI did not change or modify the condition of the existing authorised water supply works or authorised discharge works listed in the Combined Approval during 2023/24. MI did not construct new works that would allow further discharge from the Area of Operations.

2 Plan of operations and works

MI's area of operations, storages and major supply and drainage channels are presented in **Figure 1**. There were no changes to **Figure 2** from the prior financial year.

The Murrumbidgee Irrigation Area (**MIA**) is supplied by water stored in Burrinjuck and Blowering dams and released to the Murrumbidgee River. Water is diverted from the Murrumbidgee River in accordance with the conditions of the Combined Approval via two authorised supply works (**Figure 2**):

- NARREG Narrandera Regulator (after diversion from Berembed Weir via Bundidgerry Creek and regulator)
- STURT Sturt Regulator (after diversion from Gogeldrie Weir and Coononcoocabil Lagoon)

There are five (5) sites that have the potential to discharge water outside MI's area of operations, which are presented in **Figure 2**. These sites are monitored in accordance with MI's Combined Approval and EPL 4651.

MI's five discharge monitoring points are:

- EPL Point 4 LAG Gogeldrie Main Drain at Gooragool Lagoon
- EPL Point 5 GMSRR Gogeldrie Main Southern Drain River Road
- EPL Point 6 YMS Yanco Main Southern Drain
- EPL Point 7 ROCUDG Cudgel Creek Roaches Escape
- EPL Point 15 MIRFLD Mirrool Creek Floodway Wyvern Station

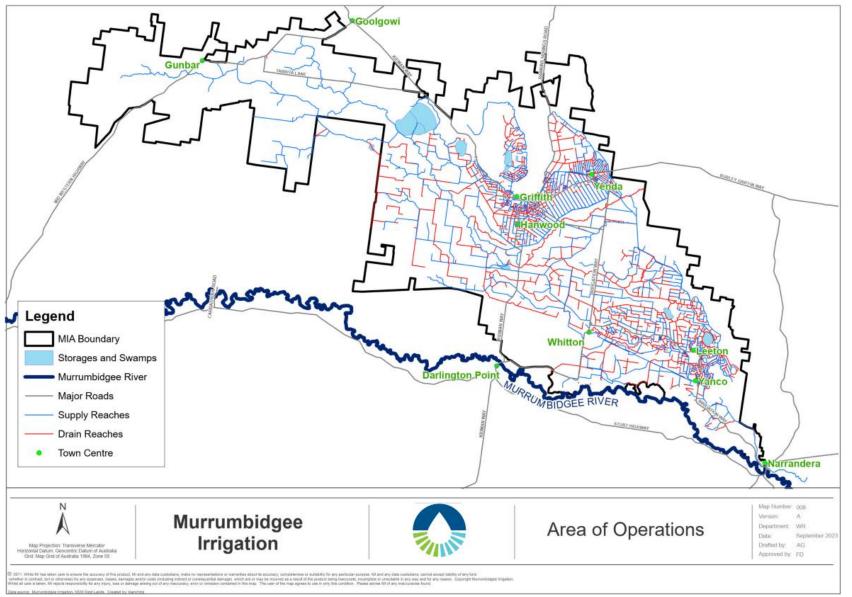


Figure 1 - Murrumbidgee Irrigation's Area of Operations

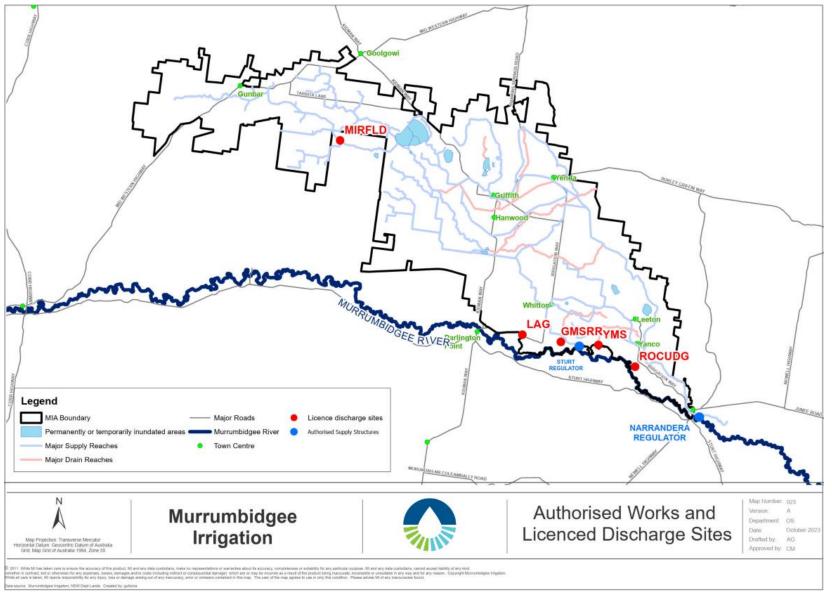


Figure 2 - Location of authorised supply works and licence discharge points

3 Reporting on water management

MI's water management information is presented below. There are no internal benchmarks or targets that are relevant to this report.

The 2016/17 reference year has been retained for this report because it had similar allocations and diversions to 2023/24 as well as similar climatic conditions and deliveries to the past few years. The total rainfall in 2016/17 is very similar to the average total rainfall received in 2020/21 to 2023/24.

3.1 Climate conditions

Rainfall data recorded at the Bureau of Meteorology (BOM) site 075041-Griffith Airport is presented in **Table 3** for 2023/24. Rainfall data from the DPI Beelbangera weather station was not used in this report due to an anomaly in the rainfall data; however, evapotranspiration (ETo) data from the DPI Beelbangera weather station has been utilised. Past climate data was obtained from CSIRO Griffith weather station, however from 2022 public access to this data was disabled. The DPI Beelbangera weather station correlates well with past CSIRO data, so it was chosen for data moving forward.

The annual rainfall decreased in 2023/24 by 172mm from the prior reporting year. Both 2021/22 and 2022/23 experienced heavy rainfall which contributed to a flood event during 2022. **Table 3** shows a correlation between lower annual rainfall and higher ETo, including in 2023/24, signifying more moderate climatic conditions and fewer periods of surface inundation during these years.

Year	Total rainfall (mm)	Total ETo (mm)	Station		
2023/24	492*	1,289**	*BOM **DPI Beelbangera		
2022/23	664	1,159	DPI Beelbangera		
2021/22	652	1,158	DPI Beelbangera		
2020/21	441	1,646	CSIRO Griffith		
Surface water reference year					
2016/17	556	1,593	CSIRO Griffith		
Groundwater reference year					
2012/13	307	1,821	CSIRO Griffith		

Table 3 - Local weather station rainfall and ETo

3.2 Calibration report for Main Canal and Sturt Canal AFFRA units

The calibration reports for Narrandera Regulator (NARREG) and Sturt Canal offtake (STURT) AFFRA units have been provided by Ventia Utility Services as part of a contract with MI to ensure flow measurements meet the conditions of MI's Combined Approval 40CA403245.

During the 2023/24 reporting year, Ventia completed 12 gaugings at NARREG and 15 gaugings at STURT. Several gaugings completed by Ventia were affected by weed interference with the AFFRA meters. This resulted in some gaugings of the STURT AFFRA meter falling outside of the ±5% range, causing the site to be in an S91i for a substantial portion of the year. Logbooks of gate flows were submitted during this time to supplement the AFFRA readings until the gauging issues could be fully rectified and a validation could be completed.

MI completed 2 additional gaugings at NARREG and 5 additional gaugings at STURT in 2023/24 to verify the accuracy of the AFFRA meter readings. MI has also taken action to reduce weed interference and improve

the efficiency of reactive maintenance of the AFFRA meters by implementing a regular maintenance schedule and displaying real time sensor interference (gain) in MI's Scada software.

The calibration report summary for the NARREG AFFRA unit is presented in **Table 4** and the STURT AFFRA unit presented in **Table 5**, including additional gaugings completed by MI. The VENTIA flow, EC, and salt load monitoring financial year report is included as **Attachment B**: VENTIA flow, EC, and salt load monitoring financial year report.

Table 4 - Main Canal at NARREG (410127) calibration report

Date	Time (24hr)	Calibration measurements: Q measured discharge ML/day	AFFRA sensor: Q recorded mean ML/day	Deviation (%)
23/08/2023	13:45	950.400	890.784	-6.27
27/09/2023	08:46	1503.878	1500.250	-0.24
26/10/2023	07:06	2401.834	2352.845	-2.04
29/11/2023	06:58	719.366	686.880	-4.52
13/12/2023	11:18	5633.5	5556.822	-1.36
20/12/2023	07:15	4060.368	3299.616	-18.74
23/01/2024	13:24	3158.870	3054.845	-3.29
21/02/2024	07:41	3037.392	2802.816	-7.72
20/03/2024	08:04	1375.142	1227.917	-10.71
24/04/2024	08:20	1068.163	1023.926	-4.14
29/05/2024	12:35	278.986	213.408	-23.51
29/05/2024	14:01	269.136	207.360	-22.95*
30/05/2024	13:00	472.522	459.541	-2.747
26/06/2024	10:41	506.995	461.981	-8.88

*Measurement was performed on windy day

Supplementary gauging performed by MI have been shaded light grey.

Table 5 - Sturt Canal at STURT (410129) calibration report

Date	Time (24hr)	Calibration measurements: Q measured discharge ML/day	AFFRA sensor: Q recorded mean ML/day	Deviation (%)
23/08/2023	10:04	527.040	582.422	-9.51
24/08/2023	16:29	393.638	428.112	-8.05
5/09/2023	10:43	575.856	567.246	-1.50
15/09/2023	10:47	411.610	452.650	-9.07
15/09/2023	12:07	465.005	504.058	-7.75
21/09/2023	10:07	824.256	887.846	-7.16
26/09/2023	12:39	2104.618	2288.650	-8.04
31/10/2023	09:14	956.448	963.792	-0.76

Date	Time (24hr)	Calibration measurements: Q measured discharge ML/day	AFFRA sensor: Q recorded mean ML/day	Deviation (%)
28/11/2023	08:27	719.971	775.354	-7.14
28/11/2023	09:21	719.021	759.283	-5.30
14/12/2023	10:03	1916.352	1819.888	-5.03
18/12/2023	09:57	2593.382	2502.313	-3.51
19/12/2023	10:16	1649.376	1688.083	-2.29
2/01/2024	12:39	800.841	738.953	-7.73
23/01/2024	08:12	783.648	821.750	-4.64
20/02/2024	10:36	1247.962	1343.866	-7.14
21/02/2024	10:19	1392.807	1278.807	-8.18
19/03/2024	08:10	573.091	530.669	7.99
19/03/2024	08:57	497.664	521.424	-4.56
23/04/2024	07:52	233.280	226.541	2.97

Supplementary gauging performed by MI have been shaded light grey.

3.3 Diversions and water allocation

A monthly summary of gross water diverted from the Murrumbidgee River is presented in **Table 6**. These volumes represent diversions entering the supply system via MI's two authorised water supply works at NARREG and STURT.

The total diversion volume of 797,951 ML includes an environmental water diversion volume of 3,082 ML diverted on behalf of the Department of Climate Change, Energy, Environment and Water (DCCEEW).

Table 6 – Monthly summaries of water diversions delivered to customers, 2023/24

Month	STURT	NARREG	Total diversion	Delivered to customers
Jul-23	222	875	1,097	2,090
Aug-23	12,937	29,570	42,507	34,970
Sep-23	19,635	51,423	71,058	68,527
Oct-23	21,428	65,813	87,241	85,064
Nov-23	24,378	71,782	96,160	90,398
Dec-23	33,586	97,711	131,297	124,654
Jan-24	20,628	67,098	87,726	93,222
Feb-24	32,331	88,225	120,556	118,486
Mar-24	23,979	69,679	93,658	81,205
Apr-24	6,263	27,686	33,949	24,381
May-24	6,107	16,195	22,302	22,740
Jun-24	0	10,400	10,400	9,780

Total	201,494	596,457	797,951	755,515

Note: All figures in ML. The figures were reviewed by a certified third party and were within the approved +/- 5% and reported to Water NSW.

Water allocations, diversions, total deliveries, and climate data for 2023/24 are compared to previous years in **Table 7**. Announced allocations indicate the irrigation demand for the season, however, rainfall and ETo can significantly affect the total diversions and deliveries supplied for the year.

Table 7 - Water allocation, total diversions, and deliveries 2023/24 compared to previous years

Year	Announced allocation (%) general / high	Diversions (ML)	Deliveries (ML)	Rainfall (mm)	ETo (mm)
2023/24	100/100	797,951	755,515	492	1,289
2022/23	100/100	613,614	586,611	664	1,159
2021/22	100/100	684,959	646,082	652	1,158
2020/21	100/100	880,456	748,988	441	1,646
2016/17	100/100	780,083	621,094	556	1,593
Note: All figure	s in MI				

Note: All figures in ML

Decreased rainfall for 2023/24 from the prior reporting year aligns with an increase in diversions and deliveries for the 2023/24 reporting year. The diversion volume in 2023/24 experienced a slight increase of 17,868ML compared to 2016/17. However, the total deliveries were 134,421ML higher in 2023/24 than during 2016/17 owing to less rainfall in the MIA during 2023/24 and increased water efficiency.

The volume of water diversions debited to each grouping of MI's Water Access Licences are shown in **Table** 8.

Year	WAL 1 High Security	WAL 2 General Security	WAL 3 Towns	WAL 4 Stock & Domestic	WAL 5 Other
2023/24	371,082	239,689	19,699	6,384	161,097
2022/23	225,705	196,269	19,699	6,384	165,557
2021/22	244,199	255,941	19,699	6,384	158,736
2020/21	231,450	404,808	19,699	6,384	218,115

Table 8 – Diversions debited to Water Access Licences groups

Note: All figures in ML. WAL 5 Other includes Supplementary Water Access and Conveyance licences

3.4 Environmental diversions

At the request of DCCEEW, 3,082 ML of environmental water was delivered in 2023/24 as shown in **Table 9**. This volume is accounted for in total diversions and deliveries shown in **Table 7**.

Table 9 - Enviro	onmental water	diversions for	2023/24
------------------	----------------	----------------	---------

Month	Tuckerbill Swamp	Cudgel Creek	Turkey Flats	Yanco Ag	Nericon Swamp	Total
Jul-23	0	0	0	0	0	0
Aug-23	0	0	0	0	0	0

Sep-23	0	179	0	0	0	179
Oct-23	210	0	120	200	31	561
Nov-23	326	92	259	0	101	778
Dec-23	0	143	0	0	0	143
Jan-24	0	87	0	0	0	87
Feb-24	0	127	0	0	45	172
Mar-24	0	117	31	93	30	271
Apr-24	386	0	88	0	102	576
May-24	200	0	0	0	94	294
Jun-24	0	0	0	0	21	21
Total (ML)	1,122	746	498	293	423	3,082

Approximately 6,018 ML was diverted to the Barren Box Storage and Wetland (BBSW) in May and June 2024 due to the BBS Active and Intermediate cells being at capacity.

3.5 Water discharged from area of operations

Monthly discharge volumes for each discharge monitoring point are shown in **Table 10**. A total of 5,219 ML was discharged from MI's Area of Operations during 2023/24.

Month	LAG (41010940)	ROCUDG (41010005)	YMS (410083)	GMSRR (41010921)	MIRFLD (41010163)
Jul-23	19 ^R	1,564 ^R	0	0^	23
Aug-23	19 ^R	40	0	1	0
Sep-23	85 ^R	87 ^R	0	3^	2
Oct-23	206 ^R	136 ^R	0	5∨	12
Nov-23	37 ^R	0 ^R	0	0 ^v	0
Dec-23	898 ^R	0 ^R	0	31 ^R	0
Jan-24	641 ^R	205 ^R	0	15 ^v	0
Feb-24	116 ^R	41 ^R	0	2 ^ĸ	0
Mar-24	51 ^R	1 ^R	0	1 ^ĸ	0
Apr-24	167 ^R	10 ^R	0	0	0
May-24	238 ^R	0 ^R	0	0^	387
Jun-24	37 ^R	35 ^R	0	0 ^v	103
Total	2,515	2,119	0	58	527

 Table 10 – Monthly discharge volumes (ML) recorded at monitoring points

Note: All figures in ML

R Rating table extrapolated

V Operational data

K Minor editing

The total discharged volumes from MI's Area of Operations compared to prior years is presented in Table 11.

The 2023/24 reporting year recorded significantly less water discharged than the prior reporting year. The difference is due to the activation of the floodway during 2022/23 for flood mitigation purposes.

Year	Total discharged (ML)
2023/24	5,219
2022/23	118,046
2021/22	8,595
2020/21	900
2016/17	122,092

Table 11 - Monthly discharge volumes (ML) recorded at monitoring points

3.6 Water balance

The annual water balance in **Table 12** has been produced to meet condition 2.12 of the Combined Approval Monitoring and Reporting Plan. To assist with the interpretation of this water balance, each line has been referenced to the specific requirements of Condition 2.12.

The conveyance volumes represented in this water balance account for seepage, evaporated water from in channel and storage, and general conveyance required to deliver water to customers.

Total gross diversions of 797,951 ML for 2023/24 were used to generate water deliveries of 752,430 ML to customers, 3,082 ML for environmental water diversions, and an additional 6,018 ML to the Barren Box Wetland cell.

	Total	847,613	809,035	735,474	891,050	980,501
2.12 (c)	Internal storage (June 30)	38,429	35,219	39,152	35,402	32,318
2.12 (b) loss	Conveyance	42,436	27,003	37,368	98,355	127,960
2.12 (b) loss	Overland flood discharge	0	112,116	0	0	27,555
2.11 (b)	Environmental water diversions	3,082	837	583	3,483	986
2.11 (a)	Discharges (without credit)	11,237+	48,086	12,872	4,822	121,363
2.10 (d)	Deliveries to customers (river and storages)	752,430	585,774	645,499	748,988	,988 670,319
	Applications					
	Total	847,613	809,035	735,474	891,050	980,501
2.12 (b)	Water captured (estimate)	14,443	156,269	15,113	5,870	171,376
2.12 (c)	Internal storage (July 1)	35,219	39,152	35,402	4,724	29,042
2.10 (a) (b) (c)	River diversions	797,951	613,614	684,959	880,456	780,083
Condition	Source	2023/24	2022/23	2021/22	2020/21	2016/17

Table 12 - Annual water balance as at 1 July 2024 and prior years

Note: All figures in ML.

+ includes 6,018 ML for BBS Wetland Cell for 2023/24

4 Water use

4.1 Crop statistics

Customers are required to nominate the intended purpose of their water use, including crops, when placing water orders. This data is not validated at the farm level and is therefore an estimate only. **Table 13** shows water deliveries and estimated crop water use for 2023/24. It is important to note the water use data presented for the total area of crop is influenced by seasonal rainfall, ETo and irrigation practices.

The 'Not Defined' category refers to water taken by MI customers without placing an order. This information is obtained after the meter is read and does not provide an opportunity to allocate the water to a use.

Crop / purpose	Area (ha)	Volume delivered (ML)	Crop water use (ML/ha)
Citrus	7,343	31,479	4
Cotton	11,382	109,775	10
Environment	1	3,082	2,778
Industrial	26	8,815	335
Nuts	8,075	52,477	7
Other crops	1	1000	1000
Other fruits	1,002	4,027	4
Plantation	87	69	1
Rice	21,280	253,500	12
Stock & Domestic	296	7,642	26
Summer cereals	2,466	26,219	11
Summer oilseeds	303	2,104	7
Summer pasture	1,941	10,366	5
Town supply	3	8,244	2,748
Vegetables	1,986	7,911	4
Vines	15,421	51,419	3
Winter cereals	54,202	97,504	2
Winter oilseeds	5,509	9,549	2
Winter pasture	7,120	16,852	2
Not defined*	-	53,481	-
Total	138,443	755,515	

Table 13 – Summary of water deliveries for major crop groupings 2023/24

*No crop type assigned.

A comparison of crop water use for 2023/24 with prior years is presented in **Table 14** and **Figure 3**.

A 100% general security allocation was maintained and saw an increase in seasonal summer cropping deliveries in 2023/24. Rice crops continued to account for the highest volume of water deliveries in the MIA, followed by cereals and oil seeds, and cotton. This is consistent with water usage trends in 2021/22 and 2020/21.

Cereals and oil seeds saw the greatest increase in water deliveries from the 2022/23 financial year, with an 85,417 ML increase, followed by cotton which increased by 38,502 ML. A reduction in annual rainfall led to greater reliance on irrigation in 2023/24 compared to 2022/23. Likewise, while flood events during 2022/23 restricted land access, broad acre crops had better on farm access for field preparation, cropping and harvest, during 2023/24.

Figure 3 shows this reporting year's water deliveries correlate with the 2020/21 and 2021/22 reporting years, along with similarities in water delivery trends for 2022/23 and 2016/17. Like 2022/23, the 2016/17 comparison year recorded below average water deliveries for cereal and oil seeds, further demonstrating the influence of flood events on the irrigation needs of these crop types. **Figure 3** also indicates that crops requiring less than 30,000 ML total deliveries and permanent plantings have the most consistent irrigation requirements. Greater variability can be seen in broad acre crops which are more influenced by seasonal climatic conditions.

Year	Rice	Pasture	Cereals and oil seeds	Vegetables	Citrus, vines, other fruits	S&D, towns, industrial	Cotton	Other crops, plantations +	Nuts+
2023/24	253,500	27,218	135,375	7,911	86,925	16,458	109,775	1,069	52,477
2022/23	259,067	22,559	49,958	6,587	78,050	13,383	71,273	3,168	41,562
2021/22	240,205	16,526	106,741	7,321	75,756	12,422	99,949	2,969	45,055
2020/21	250,516	25,742	151,247	11,587	121,579	27,092	62,778	56,611	
2016/17	304,200	26,030	57,479	10,129	109,257	9,844	82,004	71,376	

Table 14 - Total deliveries to major crop types 2023/24 compared to previous years

Note: All figures in ML. Excludes 'not defined' deliveries from Table 13.

+ Prior to 2021/22 Nuts were reported under 'other crops, plantations'.

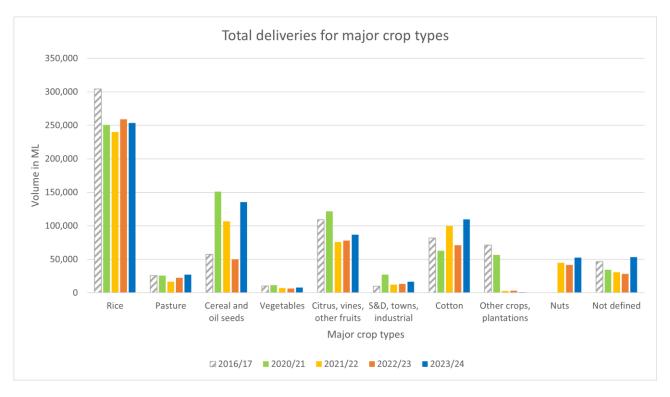


Figure 3 – Comparison of total water deliveries to major crop types

4.2 Irrigation intensity

Irrigation intensity is displayed in **Figure 4** by water use (ML/ha), from data obtained from customer deliveries and is displayed per property. This map identifies locations of landholdings using between > 0 to 4; > 4 to 8; and above 8 ML/ha of irrigation water.

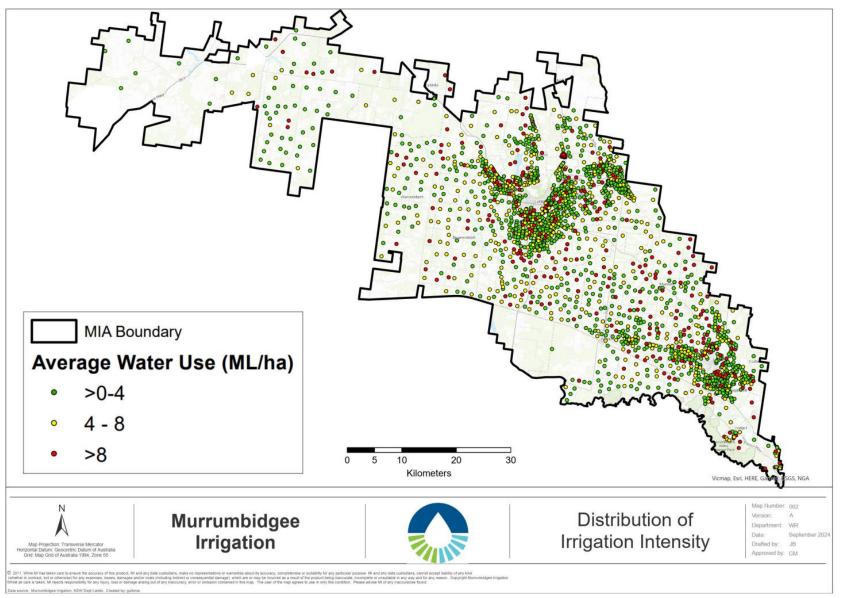


Figure 4 - Distribution of irrigation intensity across the MIA

5 Salinity and salt load

5.1 Extracted salt load

The monthly mean electrical conductivity (EC) values and extracted salt loads are calculated using EC sensors at MI's two river offtake sites NARREG and Sturt and presented in **Table 15**. **Attachment B**: VENTIA flow, EC, and salt load monitoring financial year report contains Ventia's report which outlines the data and quality assurance information.

	\$	STURT		NARREG				
Month	Flow (ML)	Mean EC (µS/cm)	Salt (t)	Flow (ML)	Mean EC (µS/cm)	Salt (t)		
Jul-23	222	169	24*	875	272	45		
Aug-23	12,937	171	1,383 ^v	29,570	191	3,437		
Sep-23	19,635	221	2,482 ^v	51,423	215~	6,211~		
Oct-23	21,428	124	1,669 ^ĸ	65,813	82.3~	2,411~		
Nov-23	24,378	105	1,605 ^ĸ	71,782	101	4,117		
Dec-23	33,586	159	3,505	97,711	119	3,704		
Jan-24	20,628	178	2,465 ^ĸ	67,098	163	6,718		
Feb-24	32,331	154	2,881 ^ĸ	88,225	146	7,302		
Mar-24	23,979	147	2,063	69,679	162	5,038		
Apr-24	6,263	172	696 ^ĸ	27,686	173	2,893		
May-24	6,107	207	798 ^v	16,195	201	2,085 ^K		
Jun-24	0	239	0	10,400	275	1,667 ^ĸ		
Total	201,494		19,571	596,457		45,628		

Table 15 - Total extracted salt loads for 2023/24

V Operational data

K Minor editing

~ Reliable Interpolation

* Manually calculated salt load

The total extracted salt loads for 2023/24 compared to prior years is presented in Table 16.

During 2023/24, an estimated 65,199 tonnes of salt was imported into MI's area of operations from the Murrumbidgee River. An increase of 7,658 tonnes of salt was imported into MI's area of operations compared to 2022/23. This coincides with an increase of 184,337ML in diversions in 2023/24.

Diversions (ML)	Extracted salt load (t)			
	Sturt	NARREG	Total	
797,951	19,571	45,628	65,199	
613,614	12,997	44,544	57,541	
684,959	15,965	44,179	60,144	
880,456	19,975	53,357	73,332	
780,083	11,722	32,903	44,625	
	613,614 684,959 880,456	Sturt 797,951 19,571 613,614 12,997 684,959 15,965 880,456 19,975	Diversions (ML) Sturt NARREG 797,951 19,571 45,628 613,614 12,997 44,544 684,959 15,965 44,179 880,456 19,975 53,357	

Table 16 - Extracted salt load (t) for 2023/24 compared to prior years

5.2 Discharged salt load

There are five licensed locations where discharge water from MI's area of operations is monitored per MI's Combined Approval and EPL 4651. The locations of these sites are shown in **Figure 2**.

Flow, EC and salt load data for these sites are presented in **Table 17**. During periods of no or low flow, while EC measurements continue to be recorded from the standing pool, no salt load is discharged. Accordingly, minor flows do not trigger accurate measurements to enable robust salt load calculations.

An estimated salt load of 1,064 tonnes were discharged from MI's area of operations through the five discharge monitoring points in 2023/24.

Month	Flow (ML)	Mean EC (μS/cm) Min EC (μS/cm)		Max EC (µS/cm)	Salt load (t)						
	Yanco Main Southern Escape (YMS) 410083										
Jul-23	-	308	193	383	-						
Aug-23	-	655	425	872	-						
Sep-23	-	539	123	831	-						
Oct-23	-	112 ^v	31 ^v	219 ^v	-						
Nov-23	-	117	23	228	-						
Dec-23	-	281	106	465	-						
Jan-24	-	212	65	361	-						
Feb-24	-	217	129	391	-						
Mar-24	-	207	149	324	-						
Apr-24	-	316	186	462	-						
May-24	-	305	175	388	-						
Jun-24	-	278	137	366	-						
Total	0				0						
		Gooragool Lagoo	on Escape (LAG) 410	10940							
Jul-23	19 ^R	318	29.8	536	3 ^R						

Table 17 - Monthly summary of flow, EC, and salt loads at monitoring points for 2023/24

Month	Flow (ML)	Mean EC (µS/cm)	Min EC (µS/cm)	Max EC (µS/cm)	Salt load (t)
Aug-23	19 ^R	221 ^K	25.1 ^ĸ	520 ^ĸ	2 ^R
Sep-23	85 ^R	255 ^v	92.6 [∨]	591 [∨]	11 ^R
Oct-23	206 ^R	395	179	675	35
Nov-23	37 ^R	476	157	1,060	19
Dec-23	898 ^R	405	168	955	155 ^R
Jan-24	641 ^R	287	128	577	111 ^R
Feb-24	116 ^R	376 ^ĸ	201 ^ĸ	766 ^ĸ	31 ^R
Mar-24	51 ^R	341	133	668	11
Apr-24	167 ^R	602	483	731	55
May-24	238 ^R	223.3	130.9	448.4	34
Jun-24	37 ^R	188.2	166.9	199.6	4.5
Total	2,515				471.5
	Gog	eldrie Main South	ern Escape (GMSRR	8) 41010921	
Jul-23	0 ^v	48.6	32.4	85.9	0
Aug-23	1	170	155	194	0
Sep-23	3^	341	289	471	1
Oct-23	5 ^v	308	216	484	1
Nov-23	0 ^v	230	131	345	0
Dec-23	31 ^R	200	102	290	3
Jan-24	15 [∨]	580	130	925	4
Feb-24	2 ^K	232	206	262	0
Mar-24	1 ^ĸ	_T	_T	_T	_T
Apr-24	0	_T	_T	_T	_T
May-24	0 ^v	113	85.7	150	0
Jun-24	0 ^v	262	71.9	298	0
Total	58 ^R				9
		Cudgel Creek Es	cape (ROCUDG) 410	010005	
Jul-23	1,564 ^R	213	156	259	201 ^R
Aug-23	40	200	113	347	4
Sep-23	87 ^R	201 [?]	157 [?]	350 [?]	11 ^R
Oct-23	136 ^R	194 ^v	76.7 [∨]	250 ^v	8 ^R
Nov-23	0 ^R	147	106	199	0
Dec-23	0 ^R	_T	_T	_T	_T
Jan-24	205 ^R	304	271	369	37
Feb-24	41 ^R	297	66.9	408	7

Month	Flow (ML)	Mean EC (µS/cm)	Min EC (µS/cm) Max EC (µS/cm)		Salt load (t)
Mar-24	1 ^R	310	76.4	338	0
Apr-24	10 ^R	219	190	247	1
May-24	0 ^R	201	191	226	0
Jun-24	35 ^R	177	156	196	3
Total	2,119				272
		Mirrool Creek Flo	odway (MIRFLD) 410	010163	
Jul-23	23	1161	1161	1161	17.2
Aug-23	0				
Sep-23	2				
Oct-23	12	494.4	494.4	494.4	3.8
Nov-23	0				
Dec-23	0	470.95	460.5	481.4	0.1
Jan-24	0				
Feb-24	0				
Mar-24	0				
Apr-24	0				
May-24	387	1104.8	1104.8	1104.8	273.4
Jun-24	103	256.7	256.7	256.7	17
Total	527				311.5

Supplementary field measurements have been shaded in grey. Due to sensor malfunction, field measurements taken during discharge were used to interpolate mean, min and max EC.

Note: See Ventia's report in Attachment B for further details. EC values for MIRFLD include compliance and due diligence monitoring results which were recorded during extended periods of release to the floodway.

Table 18 details the discharged salt load for the current reporting year and prior years, including the reference year.

A significant decrease in salt discharge tonnage in 2023/24 corresponds with a reduction in water discharged when compared to the prior reporting year. However, a combination of higher river diversions as shown in (**Table 16**), and lower discharges (**Table 18**), lead to an increase in the salt load percentage in 2023/24 when compared to prior reporting years. This is consistent with the 2016/17 reference year which had similar river diversions, with additional inputs via the Mirrool Creek during the flood event, leading to a similar salt load percentage.

The salt load per megalitre recorded over the past four years was consistently low, including where water was discharged in larger quantities. This can be attributed to MI's efforts to recycle irrigation discharge water within the MIA and our customer's efforts to improve water efficiency by recycling waters on-farm.

Year	Water discharged (ML)	Discharged Salt load (t)	Salt load/volume discharged (t/ML)
2023/24	5,219	1,064	0.204
2022/23	118,046+	18,464	0.156
2021/22	8,595	1,555	0.181
2020/21	900	88.5	0.098
2016/17	122,092+	34,230	0.280

Table 18 - Discharged salt load 2023/24 compared to prior years

+ Flood events

5.3 Salt load summary

The salt loads presented in **Table 19** displays 65,199 tonnes of salt were received through diversions recorded at MI's authorised supply works (NARREG and STURT). A total of 1,064 tonnes were discharged from the area of operations and an estimated 64,135 tonnes were retained within the MIA.

Extracted	Salt load (t)
STURT	19,571
NARREG	45,628
Total extracted	65,199
Discharged	Salt load (t)
YMS	0
GMSRR	9
LAG	471.5
ROCUDG	272
MIRFLD	311.5
Total discharged	1,064
Retained	Salt load (t)
MIA	64,135

Table 19 - Salt load summary for 2023/24

It is important to note that this is a simple annual salt balance that considers salt loads entering via authorised works and leaving via approved discharge locations. The balance does not consider other factors that impact total salt loads in the MIA.

No additional data is held by MI that is relevant to the assessment of salinity impacts under the Murray Darling Basin – Basin Salinity Management 2030.

6 Groundwater conditions

The following information is provided from MI's groundwater network monitoring only. MI cannot comment on influences on groundwater from other sources, including groundwater extraction by private owners or other entities and any recharge or disturbance from other developments or activities.

NRAR noted in their review of the 2021/22 Annual Compliance Report that MI is non-compliant with Condition 2.17 regarding having 90% of our piezometer network usable. NRAR acknowledged that MI is working toward compliance with DCCEEW. MI has not received feedback from the 2022/23 ACR at the time of creation of this report.

A rationalisation of MI's groundwater network is currently underway, including tubewell sites. MI engaged a specialist consultant to undertake this investigation and assist in any application for amending the network under our Combined Approval. An application to amend MI's Combined Approval was lodged during 2023/24 with the Department. MI is awaiting final approval for the rationalisation, with the intention of reporting on the reduced network of 300 piezometers in 2024/25.

6.1 Groundwater monitoring and reporting

Groundwater monitoring was completed in the last quarter of 2023. The network consists of piezometers in the Shallow and Deep Shepparton Formation and a smaller monitoring network in the Calivil Formation.

A total of 641 piezometers are required to be monitored and reported on as per Attachment B of the Monitoring and Reporting Plan. The locations of these bores are displayed in **Figure 5**, which has not changed from the prior financial year report.

Factors affecting the percentage read include an increasing number of piezometers found to be destroyed by land development or other activities outside of MI's control. Weather conditions and difficult to access locations also impacted the number of piezometers that were read. Where access was available, a concerted effort was made during the 2023 monitoring rounds to validate where piezometers were destroyed or not found. Of the piezometers available to be read, 99% were read in 2023.

Table 20 provides a status summary of the groundwater piezometers monitored in 2023.

A total of 543 piezometers were read during the monitoring, an increase of 3 from the prior year. The total piezometers read equates to 84.71% of the network.

Table 20 - Groundwater piezometer status summary 2023

Total bores	Total destroyed+	Dry, flooded or blocked	Total read	Total unable to read	
641	94	23	543	4	

Note: + piezometers damaged or destroyed in the field due to land development or other uses or actions.

Depth to water table data is reported for 2023, 2022, 2021, 2020, and 2012. The groundwater data is likely to be most influenced by the prior year's climatic and land conditions. The 2012/13 groundwater comparison year has been chosen due to the climatic conditions recorded in 2011/12 and 2012/13 which are similar to the climatic conditions of 2022/23 and 2023/24. Both 2023/24 and 2012/13 record a drop in total rainfall when compared to the preceding reporting years. Flood events were recorded in the MIA in both the 2022/23 and 2011/12 reporting years, including above average rainfall and saturated catchments which are likely to have impacted the groundwater readings of 2012 and 2023.

The number of piezometers read within depth ranges for 2023 are shown in **Table 21**. along with the three prior reporting years and the 2012 reference year. **Table 22** provides a comparison of the three depth class areas relative to the prior three years and the historical reference year.

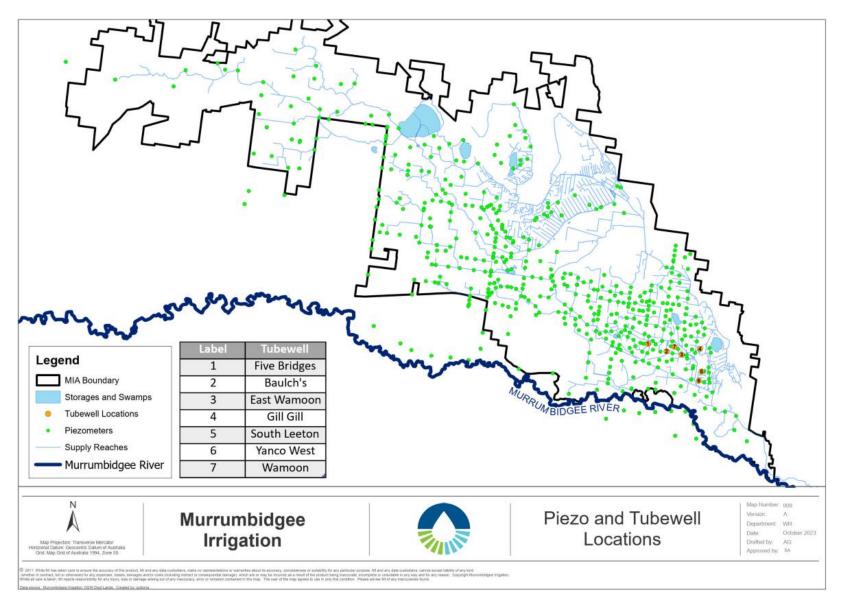


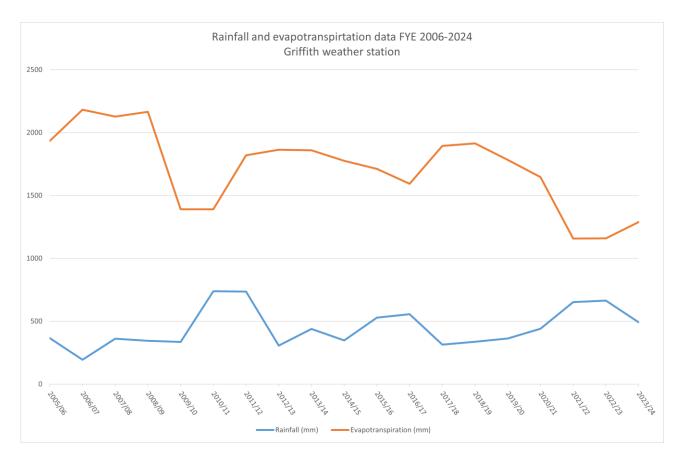
Figure 5 - Location of piezometers and tubewells in the MIA 2023/24

Year	<2M of surface	2-4M of surface	>4M of surface	% <2M of surface	% 2-4M of surface	% >4M of surface	Total
2023	67	134	342	12%	25%	63%	543
2022	52	110	378	10%	21%	70%	540
2021	23	100	431	4%	18%	78%	665
2020	12	86	437	2%	16%	82%	535
2012+	54	157	408	9%	23%	66%	619

Table 21 - Number and percent of total piezometers readings within each depth range

+ excludes piezometers that became inactive following a groundwater network rationalisation in 2015.

Table 22 - Change	e in grou	undwater	depth
-------------------	-----------	----------	-------


ground-		Donth to	water table	araa (ba)			Change i	n depth	
water		Depth to water table area (ha)					= rising]	[- = falling]
depth range (m)	2023	2022	2021	2020	2012	2023 vs 2022	2023 vs 2021	2023 vs 2020	2023 vs 2012
<2M	10,891.7	11,103.4	3803	178	14,112.8	-212	7,089	10,714	-3,221
2-4M	70,457	57,736	50,627	24,392	64,120.83	12,721	19,830	46,065	6,336
>4M	288,773	301,290.8	306,618	336,117	291,811.5	-12,518	-17,845	-47,344	-3,039
Total	370,121.7	370,130.2	361,048	360,687	370,045.13				

Note: Previous years' data was cropped to match MI's area of operations for comparison.

Table 21 shows the standing water level (SWL) of piezometers is rising, with 37% of the network recording standing water levels within 4 meters of the surface level. This has resulted in a 7% decrease in SWLs recorded at depths greater than 4m compared to the prior reporting year. Localised flooding and extended periods of inundation in 2022 are likely to have influenced standing water levels during this time.

Table 22 contains information using SWLs at known points interpolated to each pixel within MI's area of operations using the nearest neighbour resampling method. The area for each depth class equals the count of pixels within the depth class * pixel size. Data for each year in the table was cropped to the extent of MI's area of operations for comparison. This information can change if certain piezometers are not read due to being blocked, flooded, destroyed or lack of access.

Figure 6 - Rainfall and evapotranspiration data FYE 2006-2024 - Griffith weather station

Figure 6 shows similar climatic patterns in the lead up to both 2012/13 and 2023/24, with rainfall decreasing while evapotranspiration increases. Despite similar climatic conditions, the MIA encompassed a greater land area in 2012/13 than in 2023/24, with a more widely spread water delivery network. In addition, water delivery in the MIA in 2023/24 was more efficient than in 2012/13, with 95% of diversions from the river being delivered to MI customers in the current reporting year, compared to 87% in 2012/13. This increase in productive water use within a more concentrated area may contribute to a greater influence on groundwater trends in 2023 than there had been in 2012.

The overall trend in groundwater levels using both point data from **Table 21** and area data from **Table 22** shows groundwater levels are rising when compared to both recent years and the benchmark year of 2012. While the extent of groundwater within 2m of the surface has decreased in hectares from 2022 to 2023, and from 2012, the extent of groundwater within 4m of the surface has increased in 2023. This rise is consistent with above average rainfall and saturated catchments in the preceding year, followed by a reduction in rainfall in 2023, allowing groundwater recharge to occur in the 2-4m depth range.

In 2015, approval was given for the groundwater piezometer network to be reduced. As a result, in 2023 piezometer readings in some areas are indicative of a larger area than they had been in 2012, influencing the interpretation of the depth to water table area.

6.2 Groundwater salinity

Groundwater salinity was not requested by the Minister for 2023/2024 reporting year.

6.3 Shallow Shepparton Formation

The depth to water table for piezometers in the shallow Shepparton Formation are presented in **Figure 7** to **Figure 11**. Groundwater levels in this formation are expected to be highly influenced by seasonal rainfall, geology, and irrigation. A comparison between **Figure 7** and **Figure 8** demonstrates that the groundwater levels have risen in comparison with the prior year, with more of MI's area of operation falling within 3m of the surface. Likewise, less of the area of operation has groundwater levels of deeper than 7.1m - 8m.

In 2023, thirty-three piezometers in the Shallow Shepparton Formation experienced a rise of more than 1 m in SWL from the prior year. When compared to 2012 (**Figure 11**), 2023 groundwater piezometers show a higher number of standing water levels within 4 m of the surface level. Compared to the prior reporting year, both 2012/13 and 2023/24 saw low annual rainfall, high river diversions and high deliveries. While **Table 21** shows that the percentage of piezometer readings at each depth range is similar in 2012 and 2023, overall, **Figure 7** and **Figure 11** indicate that the groundwater level is rising.

Short term influences on rising groundwater in the Shallow Shepparton Formation include an increase of 168,904 ML water deliveries to customers in 2023/24 from the prior year. Most of this water went to broad acre cropping, which typically requires consistent watering to maintain soil moisture. Long term factors include above average rainfall in the prior two years leading to saturated catchments. Prolonged flooding of local water bodies during 2022 allowed captured flood waters to slowly precipitate through the ground surface to the water table. Rising groundwater levels in 2023 were largely influenced by water usage and the climatic conditions in the preceding year.

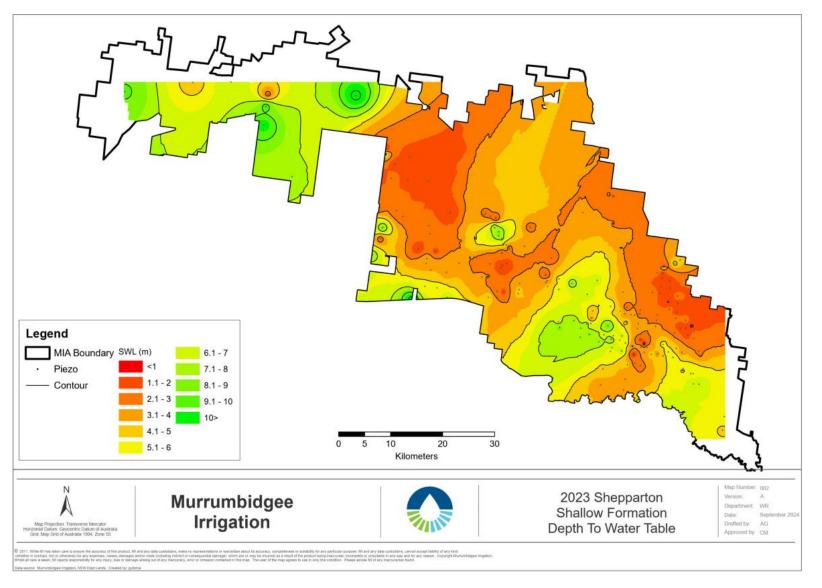


Figure 7 - Shallow Shepparton Formation – depth to water table 2023

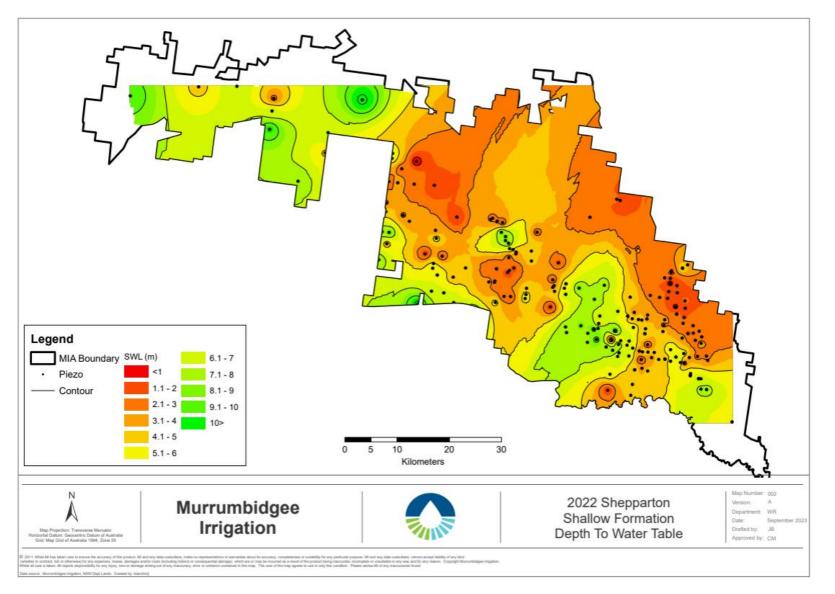


Figure 8 - Shallow Shepparton Formation – depth to water table 2022

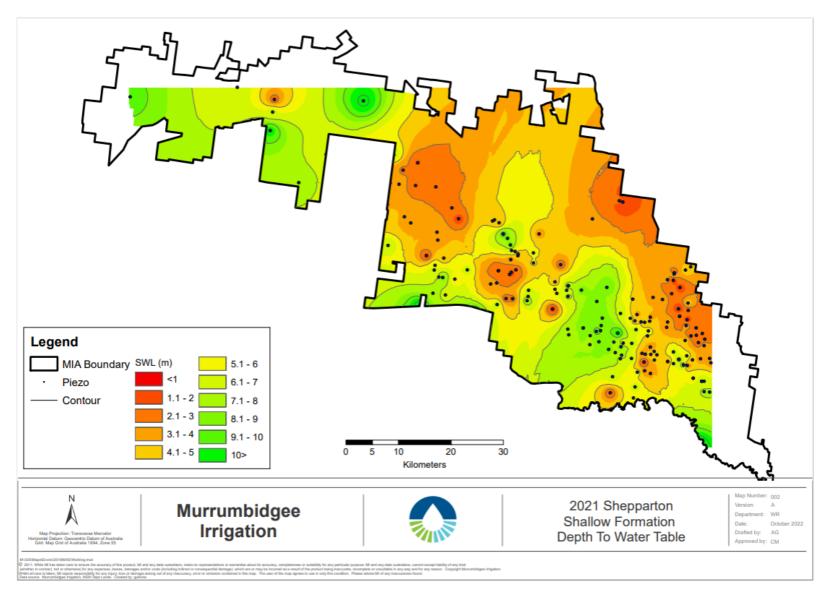


Figure 9 - Shallow Shepparton Formation – depth to water table 2021

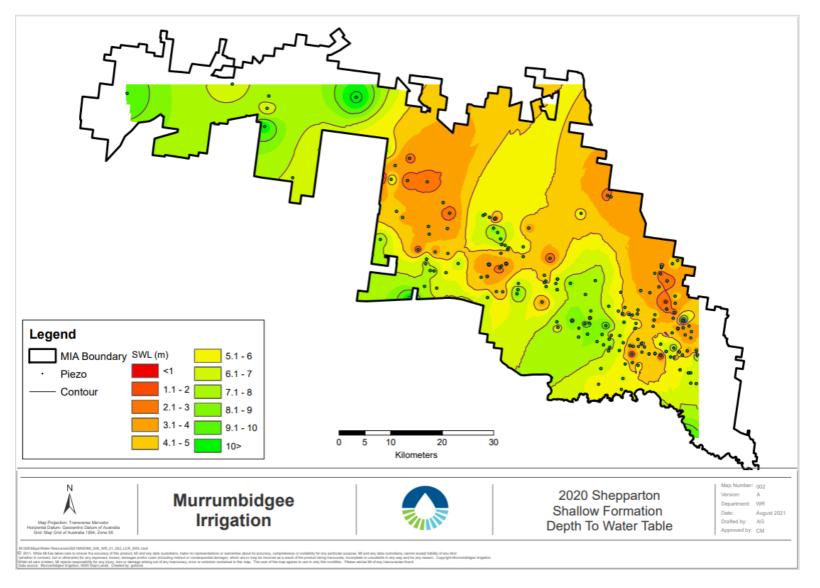


Figure 10 - Shallow Shepparton Formation – depth to water table 2020

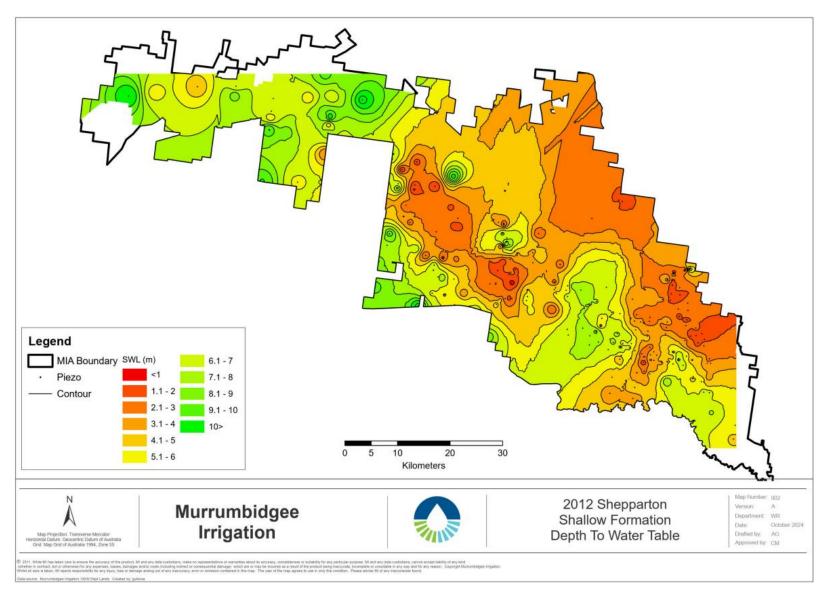


Figure 11 - Shallow Shepparton Formation – depth to water table 2012

6.4 Deep Shepparton Formation

Depth to water table for piezometers in the deep Shepparton Formation are presented in **Figure 12** to **Figure 16**.

Groundwater levels in the deep Shepparton Formation are influenced by the shallow Shepparton Formation in the long term. This means that seasonal rainfall, irrigation practices and geology also impact the SWLs recorded in this aquifer.

Like the shallow formation, a number of piezometers in the deep Shepparton Formation recorded rising SWLs in 2023, with 115 piezometers recording a rise greater than 1m since 2022. Twelve piezometers had a rise in SWL of more than 5m.

A comparison of 2023 (Figure 12) and 2022 (Figure 13) demonstrates an increase in groundwater levels within 3 m of the surface. The number of piezometers recorded within 7 m of the surface in 2023 has also increased compared to 2012, with areas of shallow groundwater recorded in similar locations to where they had been in 2012 (Figure 16), but spreading to cover a larger section of the MIA in 2023 (Figure 12). However, large areas of the deep Shepparton Formation remain where SWL readings are deeper than 9 m below surface level, which is consistent across all reporting years.

Contributing factors influencing the rise in groundwater in 2023 in this formation include consecutive years of high river diversions, as well as above average annual rainfall and saturated catchments in the preceding years. The rise in groundwater in the shallow Shepparton Formation over the past several reporting years is reflected in the rising groundwater levels of the deep Shepparton Formation.

Groundwater extraction may also influence levels in this aquifer; however, MI does not have access to this data.

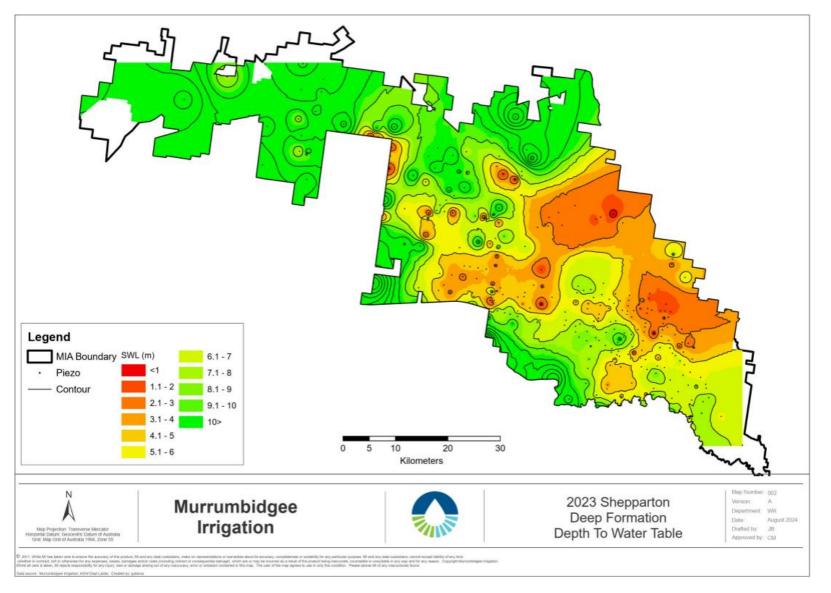


Figure 12 - Deep Shepparton Formation - depth to water table 2023

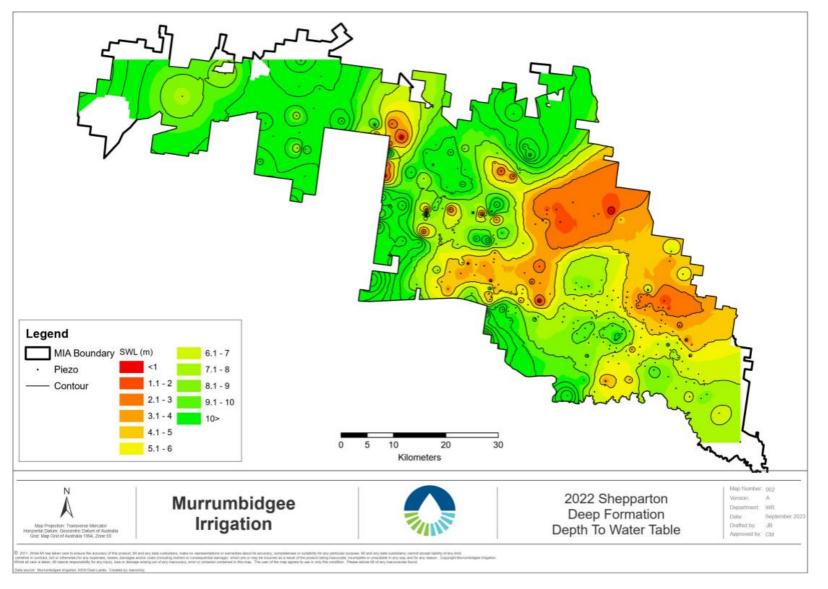


Figure 13 - Deep Shepparton Formation - depth to water table 2022

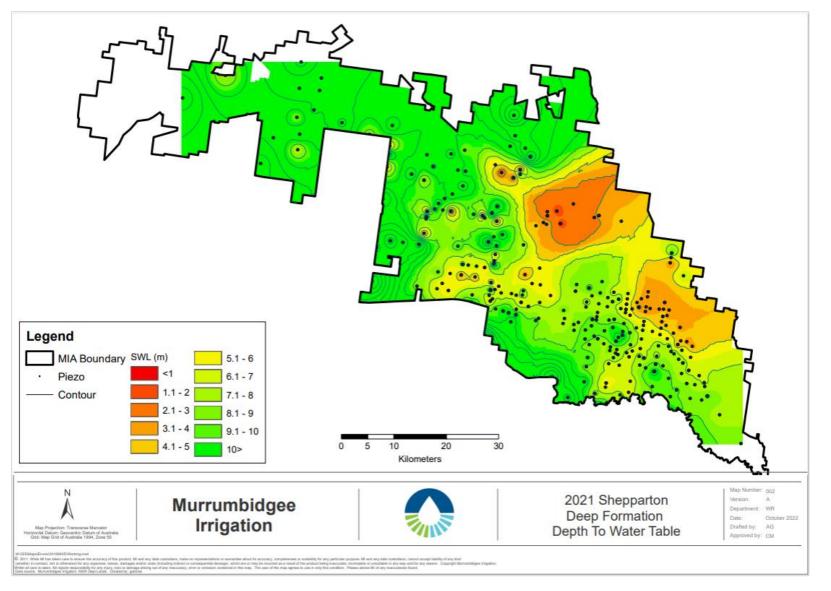


Figure 14 - Deep Shepparton Formation - depth to water table 2021

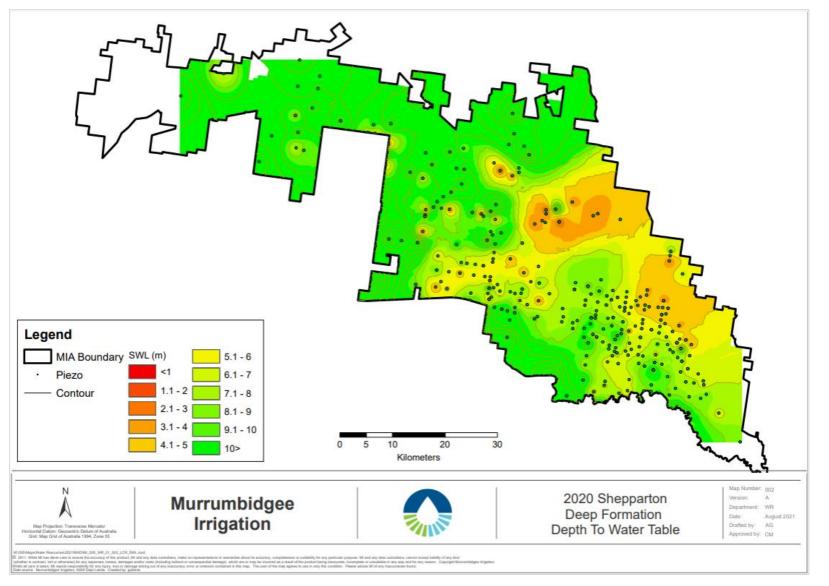


Figure 15 - Deep Shepparton Formation - depth to water table 2020

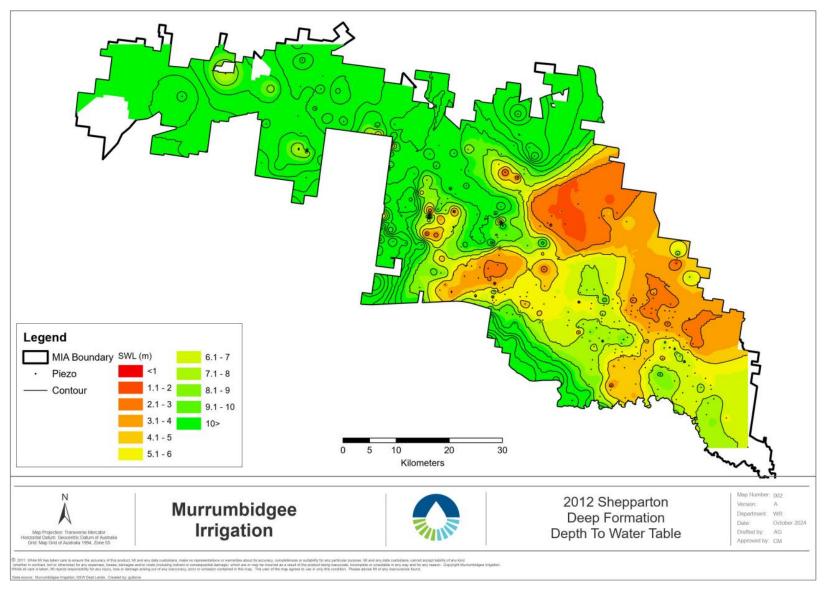


Figure 16 - Deep Shepparton Formation - depth to water table 2012

6.5 Calivil Formation

Depth to water table for piezometers in the Calivil Formation are presented in Figure 17 to Figure 21.

Level trends in this formation generally represents drawdown from the shallow and deep Shepparton aquifers. **Figure 17** (2023) shows a small increase in piezometers recording a SWL between 7.1 m and 10 m deep compared to **Figure 18** (2022). There is also a slight decrease in SWLs within 6 m of the surface. In all reporting years, including the baseline year of 2012, the majority of piezometers record a SWL of greater than 10 m deep. Overall, the levels in this aquifer remain consistent.

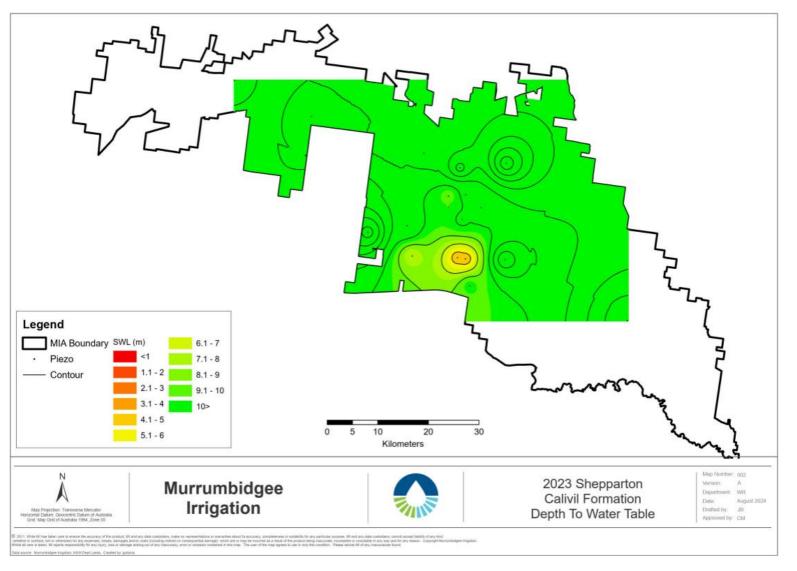


Figure 17 - Calivil Formation – depth to water table 2023

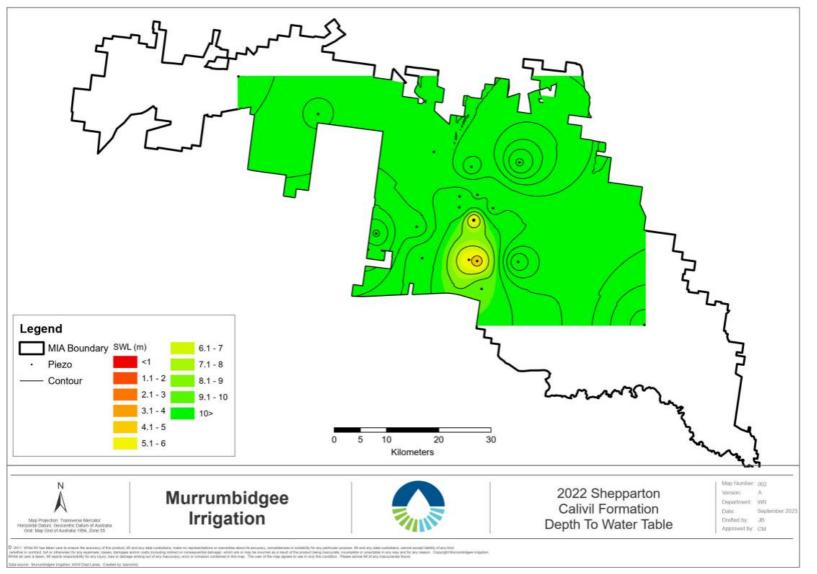


Figure 18 - Calivil Formation – depth to water table 2022

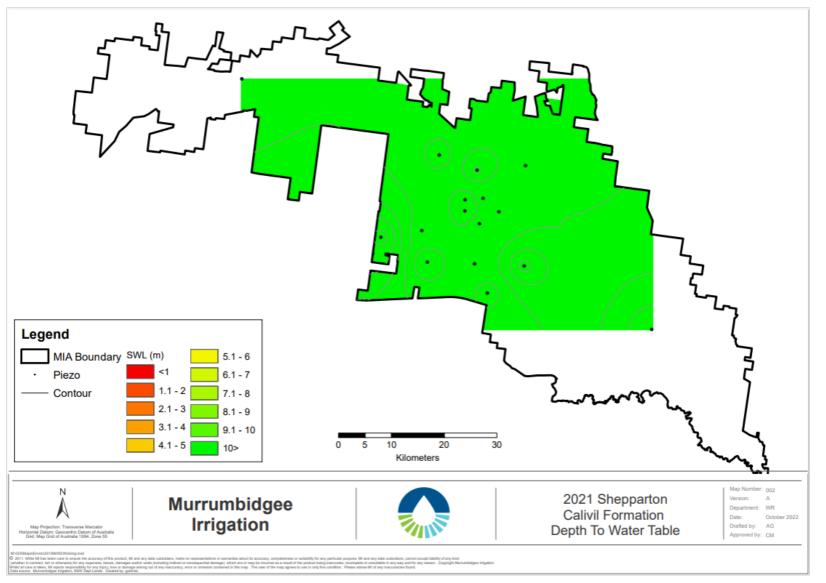


Figure 19 - Calivil Formation - depth to water table 2021

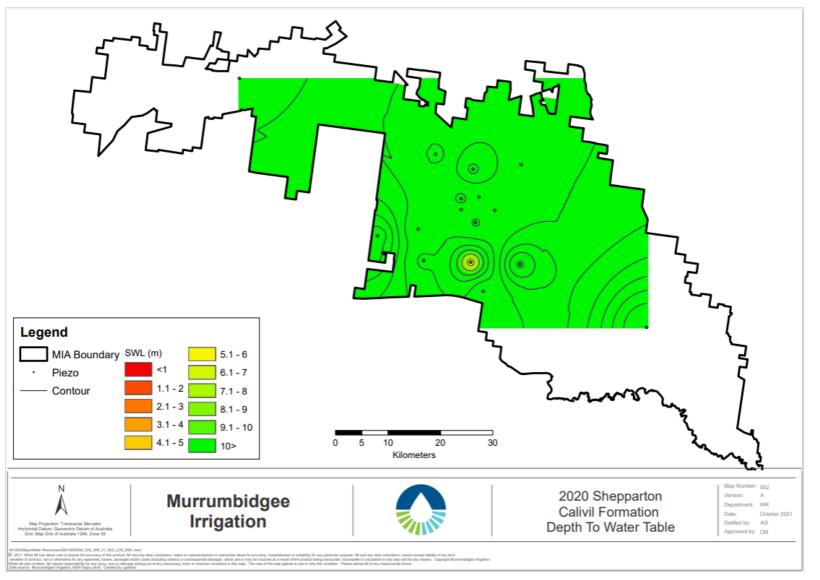


Figure 20 - Calivil Formation – depth to water table 2020

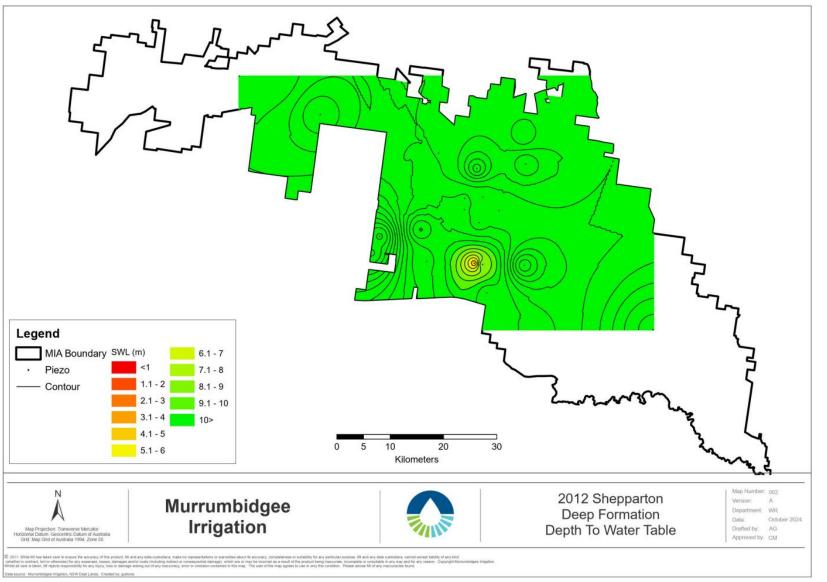


Figure 21 - Calivil Formation – depth to water table 2012

7 Tubewells

MI monitors the volume of water and salt load pumped from seven tubewells within the MIA when operational. The locations of the tubewells are shown in **Figure 5**.

No tubewells were operated during the 2023/24 reporting period.

MI is collaborating with the DCCEEW to pursue the rationalisation of our groundwater network as detailed under section 6. It will include DCCEEW issuing MI a water supply work approval and a specific purpose access licence for the tubewell sites.

8 New measures to limit groundwater recharge and discharge of salt

No new measures were implemented for 2023/24.

9 Environmental protection and management

9.1 Discharge of noxious aquatic weeds

During 2023/24 irrigation year, there were no known actual or potential discharge of Class 1, 2 or 3 declared aquatic weeds from MI's Area of Operation.

9.2 Discharge of blue-green algae

There were no discharge events that contained a red alert level of blue green algae from MI's area of operation during the 2023/24 reporting year.

ENVIRONMENTAL PROTECTION LICENCE 4651

10 Statement of compliance

MI has fulfilled the compliance requirements as set out in EPL 4651 for 2023/24. A summary of the compliance requirements is cross referenced to this report and listed in **Table 23**.

No non-compliances were recorded and reported during 2023/24.

Quality assurance and control procedures are in place to ensure data integrity and all compliance obligations are fulfilled. This includes using a NATA accredited laboratory for water sample analysis and contracting an external hydrological service provider to manage and maintain automated monitoring stations at discharge points. Internal Standard Operating Procedures (SOPs) for monitoring and reporting are reviewed and updated regularly.

MI has in place a process to receive complaints from members of the public concerning MI's activities via the business telephone number. Contact information for complaints can be found on MI's website (https://www.mirrigation.com.au/company/contact).

Table 23 - EPL 4651 monitoring and reporting requirements

Licence section	Requirement	Compliant	Included in this report
Administrative Conditions	1	Yes	No, not applicable
Discharges to Air and Water and Applications to Land	2	Yes	N/A
Limit Conditions	3	Yes	N/A
Operating Conditions	4	Yes	N/A
Maintain a Chemical Contingency Plan	O3.1	Yes	
Maintain a Chemical Control Plan	O3.5	Yes	No, see:
Maintain Pollution Incident Response Management Plan	Required for all EPL holders under the <i>Protection of</i> <i>Environment</i> <i>Operations Act 1997</i>	Yes	https://www.mirrigation.com.au/wat er/water-quality
Monitoring and Recording Conditions	5	Yes	10. Statement of compliance
Monitoring Records	M1	Yes	No - available upon request from EPA
Requirement to monitor concentration of pollutants discharged	M2	Yes	11. EPL monitoring and reporting
Testing Methods	M3	Yes	No - Internal documents
Recording of pollution complaints	M4	Yes	No - available upon request from EPA
Telephone complaints line	M5	Yes	10. Statement of compliance
Requirement to monitor volume or mass	M6	Yes	11. EPL monitoring and reporting
Other Monitoring and recording conditions	M7	Yes	9.1 Discharge of noxious aquatic weeds
Annual return documents	R1	Yes	Submitted 29 August 2024
Annual system performance report	R4 Summary R2, R3 & R5	Yes	 a) 3. Reporting on water management b) 11. EPL monitoring and reporting & 11.2 Water quality monitoring c) 11.3 Summary of events d) 12. Proposed changes

11 EPL monitoring and reporting

Under MI's EPL 4651, five locations (**Figure 2**) are licensed to allow water to be discharged outside MI's Area of Operation, with the condition that all flows are recorded, and specified water quality parameters are monitored. These discharge points are listed below:

- POINT 4 LAG Gogeldrie Main Drain at Gooragool Lagoon
- POINT 5 GMSRR Gogeldrie Main Southern Drain River Road
- POINT 6 YMS Yanco Main Southern Drain
- POINT 7 ROCUDG Cudgel Creek Roaches Escape
- POINT 15 MIRFLD Mirrool Creek Floodway Wyvern Station

11.1 System performance

Table 24 presents total diversions into the MIA and total water discharged from the MIA for 2023/24 compared to previous years. 2023/24 saw an increase in river diversions coupled with a significant decrease in the volume of water discharged compared to the prior year. This is the result of dryer conditions and 100% allocations in 2023/24, leading to customers keeping more water stored on farm for agricultural use. A similar trend can be seen in 2020/21 and 2021/22. In contrast, high volumes of water were discharged in 2016/17 and 2022/23 due to flood events where saturated land and full storages led to increased runoff and drainage flows throughout the MIA. The return to more moderate climatic conditions in 2023/24 led to an increase in productive irrigation water use in the MIA.

Year	Diversions (ML)	Discharged (ML)
2023/24	797,951	5,219
2022/23	613,614	118,046
2021/22	684,959	8,595
2020/21	880,456	900
2016/17	780,083	122,092

Table 24 - Total water volumes

11.2 Water quality monitoring

Monthly summaries for each monitoring point are presented in **Table 25** to **Table 29**. Monitoring consisted of sixty-three sampling events, with ten Notification level detections and eleven Action level chemical detections.

Diuron, simazine and metolachlor were detected above licence limits in 2023/24. Diuron was detected most frequently and was the only chemical detected above EPL action level limits. Chemical detections were found at two of the five licenced sites, Point 4 - LAG, and Point 5 - GMSRR.

Table 25 - Monitoring results for Point 4 - LAG

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-23	19	2	3	05/07/24 Notification level Diuron (0.542μg/L) 07/07/23 Action level Diuron (1.58μg/L) 07/07/23 Notification level Metolachlor (0.816μg/L)
Aug-23	19	2	0	-
Sep-23	85	4	2	25/09/23 Notification level Metolachlor (0.464 μ g/L) 26/09/23 Notification level Metolachlor (1.52 μ g/L)
Oct-23	206	2	0	-
Nov-23	37	0	0	Flow commencing late November was captured in samples taken in early December.
Dec-23	898	5	1	11/12/23 Notification level Diuron (0.311µg/L)
Jan-24	641	4	0	-
Feb-24	116	4	0	-
Mar-24	51	2	0	-
Apr-24	167	3	3	11/04/24 Action level Diuron (67.9μg/L) 29/04/24 Action level Diuron (15.7μg/L) 29/04/24 Notification level Simazine (6.73μg/L)
May-24	238	6	5	02/05/24 Notification level Diuron (0.308µg/L) 10/05/24 Action level Diuron (1.14µg/L) 17/05/24 Action level Diuron (2.04µg/L) 31/05/24 Action level Diuron (1.06µg/L) 31/05/24 Notification level Simazine (3.75µg/L)
Jun-24	37	2	2	03/06/24 Action level Diuron (24.5µg/L) 05/6/24 Action level Diuron (4.73µg/L)
Total	2515	36	16	

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-23	0	0	0	-
Aug-23	1	1	0	-
Sep-23	3	0	0	Flow in late September remained below 2ML
Oct-23	5	2	1	03/10/23 Notification level Metolachlor (2.15µg/L)
Nov-23	0	0	0	-
Dec-23	31	3	2	01/12/23 Action level Diuron (1.46µg/L) 19/12/23 Action level Diuron (18.5µg/L*)

Total	58	10	5	
Jun-24	0	0	0	-
May-24	0	0	0	-
Apr-24	0	0	0	-
Mar-24	1	1	0	-
Feb-24	2	1	0	-
Jan-24	15	2	2	03/01/24 Action level Diuron (2.47µg/L) 03/01/24 Notification level Metolachlor (0.696µg/L)

Table 27 - Monitoring results for Point 6 - YMS

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-23	0	0	0	-
Aug-23	0	0	0	-
Sep-23	0	0	0	-
Oct-23	0	0	0	-
Nov-23	0	0	0	-
Dec-23	0	0	0	-
Jan-24	0	0	0	-
Feb-24	0	0	0	-
Mar-24	0	0	0	-
Apr-24	0	0	0	-
May-24	0	0	0	-
Jun-24	0	0	0	-
Total	0	0	0	

Table 28 - Monitoring results for Point 7 - ROCUDG

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-23	1564	1	0	
Aug-23	40	1	0	
Sep-23	87	1	0	
Oct-23	136	1	0	
Nov-23	0	0	0	
Dec-23	0	0	0	

Jan-24	205	1	0	-
Feb-24	41	2	0	-
Mar-24	1	0	0	Flow remained below 2ML during March
Apr-24	10	1	0	-
May-24	0	0	0	-
Jun-24	35	1	0	-
Total	2119	9	0	

 Table 29 - Monitoring results for Point 15 – MIRFLD

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-23	23	2	0	Due diligence sample taken
Aug-23	0	0	0	-
Sep-23	2	1	0	Due diligence sample taken
Oct-23	12	1	0	-
Nov-23	0	0	0	-
Dec-23	0	2	0	-
Jan-24	0	0	0	-
Feb-24	0	0	0	-
Mar-24	0	0	0	-
Apr-24	0	0	0	-
May-24	387	1	0	-
Jun-24	103	1	0	-
Total	527	8	0	

Figure 22 provides a comparison of annual rainfall received, compared to the number of chemical detections and sampling events for the last four years.

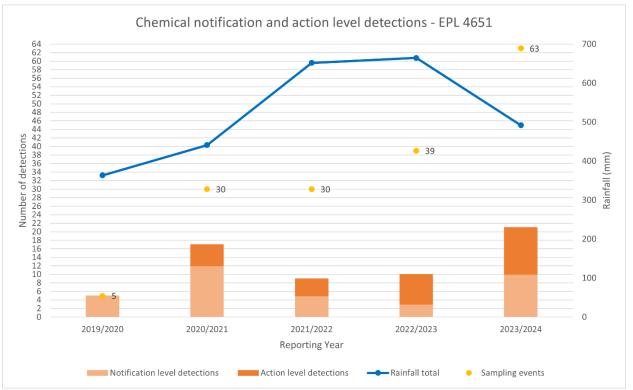


Figure 22 - Comparison of irrigation drainage water notification trends

Figure 22 shows that the number of sampling events during 2023/24 increased significantly from previous reporting years, despite lower annual rainfall. This was due to low flows through compliance monitoring locations resulting in multiple compliance alarms being triggered during customer drainage. Ongoing gauging efforts also contributed to additional sample events at GMSRR and LAG.

Accordingly, the number of chemical detections increased in 2023/24 compared to prior reporting years, with 33% of sample events detecting an EPL exceedance. However, additional sample events lead to multiple chemical detections contributing to the same exceedance events at both LAG and GMSRR. Twenty-one detections contributed to a total of seven exceedance events recorded in 2023/24, three of which were notification events only, which is consistent with the prior reporting year.

Four exceedance investigation reports were submitted to the EPA in 2023/24 for exceedance events where diuron was detected at an action level.

MI has provided Chemical Fact Sheets to our customers via our website to raise awareness in the MIA on the risks of chemical use and the need to comply with MI's Drainage Use Rules. Where investigations have been undertaken, direct contact with customers occurs via phone calls, letters, emails and in-field meetings to raise awareness of MI's EPL requirements, Drainage Use Rules and the need for customers to comply with all pesticide legislative requirements, including using chemicals in accordance with their approved labels. Improvements in the percentage detections compared to the number of samples taken in 2023/24 suggest that MI's efforts to raise awareness may be having a positive effect.

11.3 Summary of events

Table 30 - Summary of events 2023/24

Year	Notification of environmental harm	Written report (of an event)	Exceedances
2023/24	0	0	21

12 Proposed changes

During 2023/24 MI proposed administrative changes to several conditions outlined below. MI received a notice of variation of Licence No. 4651 on 28 November 2023.

The following variations have been made to the licence:

- Updated Condition A3.1 to include 'Barren Box Storage Wetland'
- Updated Condition O3.6 to update the best management references for weed infestations
- Updated Condition R4.1 to include 'info@epa.nsw.gov.au
- Updated Condition P1.2 reference document and coordinates for the monitoring points.

MI does not propose any further changes at this time.

Attachment A: Significant events for 2023/24

Murrumbidgee Irrigation notified the minister of one significant event during 2023/24 reporting year. The significant event details are outlined below in **Table 31**. The significant event was notified to the minister using the S91i process.

Table 31 - Summary of significant events 2023/24

Date lodged	Reference	Site	Event details	Occurrence	Corrected by	Date closed
25/08/2023	CS0571282	Sturt (17959)	Meter out of tolerance by 11%		Review of flow index equation and operations of structure at low flows.	Currently open

Attachment B: VENTIA flow, EC, and salt load monitoring financial year report

MURRUMBIDGEE IRRIGATION - FLOW, EC & SALT LOAD MONITORING FINANCIAL YEAR 2023/2024 REPORT

Issue

Issued Date 30/09/2024

1.2

Prepared	Ping Yao (Environmental Scientist)
Reviewed	Matthew Bamford (Area Manager)
Approved	Matthew Bamford (Area Manager)

Proprietary Notice:

This document contains confidential information. In consideration of receipt of this document, the recipient agrees to maintain such information in confidence and to not disclose this information to any person outside of Ventia without the written permission of the author.

EXTERNAL CONFIDENTIAL

DOCUMENT CONTROL & DISTRIBUTION LIST

Report No.

RPT0654

Contact for Enquiries and Proposed Changes

If you have any questions regarding this document, please contact:

Name	Matthew Bamford
Designation	Area Manager
Phone	03 5824 3122
Email	Matthew.Bamford@ventia.com

Document Control

Version	Date	Description	By	Authorised
0.1	07/08/2024	Draft	Ping Yao	Matthew Bamford
0.2	21/08/2024	For Client to Review	Ping Yao	Matthew Bamford
1.0	23/08/2024	Final	Ping Yao	Matthew Bamford
1.1	17/09/2024	Revision	Ping Yao	Matthew Bamford
1.2	30/09/2024	Revision	Ping Yao	Matthew Bamford

Notification / Distribution List

Section/Group	Contact
Murrumbidgee Irrigation Limited	Lindsay Golsby-Smith
Murrumbidgee Irrigation Limited	Paul Blumer
Murrumbidgee Irrigation Limited	Sam Yenamandra
Murrumbidgee Irrigation Limited	Cindy McDonald
Murrumbidgee Irrigation Limited	Chris Palmer
Ventia Utility Services	Matthew Bamford

The above notification list is a minimum controlled distribution and it is the responsibility of the persons receiving the notification to further notify other Ventia personnel within their area if required.

TABLE OF CONTENTS

1.0	Introduction1
2.0	Annual Flow Summaries2
	2.1 Compliance Sites2
	2.2 Offtake Sites
3.0	Annual Salt Load Summaries8
	3.1 Compliance Sites8
	3.2 Offtake Sites
4.0	Annual EC Summaries14
	4.1 Compliance Sites14
	4.2 Offtake Sites
5.0	Annual Site Summaries for sites affected by back-up20
	5.1 Compliance Sites:
	5.2 Offtake Sites:
6.0	Site visited Summary
7.0	EWA's 2023/2024
8.0	Measurement Summary 23
	8.1 410127 MAIN CANAL @ NARRANDERA REGULATOR
	8.2 410129 STURT CANAL @ OFFTAKE

1.0 Introduction

Ventia Utility Services Pty Ltd (Ventia) is contracted by Murrumbidgee Irrigation (MI) to conduct continuous level/flow and salinity monitoring at a range of locations distributed across their area of operations.

This report presents monthly statistics and annual summaries of total flow and salt loads derived from the monitoring at drain sites and supply sites for the 2023/2024 financial year. Site 410083 contains no flow or salt load data as the rating table was suspended as of the 01/06/2010 to present due to the installation of new gates.

This report contains information relating to Murrumbidgee Irrigation Compliance sites 410083, 41010005, 41010921 and 41010940. Also reported on are the two offtake sites being 410127 and 410129. An annual site summary can be found in this report on all sites maintained by Ventia field staff.

Daily figures refer to the period ending at midnight (24:00) for the compliance sites, while the cutoff time for the two offtake sites (Narrandera and Stuart) has been 6:00 a.m. as required by MI since July 2023.

All data reported is extracted from the Ventia Hydstra software archive to an accuracy of three (3) significant figures. A data extraction process called HYTAB is used when extracting the data. HYTAB utilises a configuration file provided by MI to format the data. This file stipulates reporting to four (4) significant figures. Using four significant figures implies an unrealistic level of accuracy for the data collection processes undertaken. Ventia data reporting standards recommend a maximum of three (3) significant figures.

2.0 Annual Flow Summaries

2.1 Compliance Sites

Site Variable Year	410083 141.00 2023/24		AIN SOUTHER Discharge (ailable	for releas	е	Site Year		410083 023/24
Day	Jul Au	g Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	[]S [[]S]S []S]S []S <td< td=""><td><pre>[]S []S []S []S []S []S []S []S</pre></td><td>[]S []S []S []S []S []S []S []S</td><td><pre>[]S []S []S []S []S []S []S []S</pre></td><td><pre>[]S []S []S []S []S []S []S []S</pre></td><td><pre>[]S []S []S []S []S []S []S []S</pre></td><td><pre>[]S []S []S []S []S []S []S []S</pre></td><td>[]S []S []S []S []S []S []S []S</td><td><pre>[]S []S</pre></td><td>[]S []S []S []S []S []S []S []S</td><td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 3 24 25 26 27 28 29 30 31</td></td<>	<pre>[]S []S []S []S []S []S []S []S</pre>	[]S []S []S []S []S []S []S []S	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	[]S []S []S []S []S []S []S []S	<pre>[]S []S</pre>	[]S []S []S []S []S []S []S []S	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 3 24 25 26 27 28 29 30 31
Mean Median Max.Daily Min.Daily Inst.Max Inst.Min Total Max.Water Leve Min.Water Leve	[]S [[]S []s []s]s []s	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	
Annual Mean [Ann. Median [Annual Total []S [Al ex S U Al Fi	l recorded cept where Rating Lost d l Totals ar gures refer	data is c the follo table su ata (NRE e in mega	ontinuous wing tags spended approved) litres	and relia are used.	able	Table Fr		To Present		.Disch iable

The rating table for this site was suspended by Ventia on the 01/06/2010 as new gates were installed by Murrumbidgee Irrigation. Ventia does not currently supply flow data for this site. Data between 12 and 27 November 2023 was lost due to the theft of the site battery and vandalism of the logger box. Data between 21 and 24 April 2024 was lost due to the theft of the site battery again.

MURRUMBIDGEE IRRIGATION - FLOW, EC & SALT LOAD MONITORING FINANCIAL YEAR 2023/2024 REPORT

Site Variable Year	410100 141.00 2023/2	1		REEK AT RO ischarge			CUDG) es/day, A	vailable	for rele	ase	Site Year		10005 23/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1	27.7R	0.0R	0.0R	0.1R	0.0R	0.0R	0.0R	0.0R	0.1R	0.0R	0.0R	0.0R	1
2	151 R	0.0R	0.0R	0.0R	0.0R	0.0R	0.0R	0.0R	0.4R		0.0R	0.0R	2
3	136 R	0.0R	0.0R	0.1R	0.0R	0.0R	0.0R	0.0R	0.3R	0.0R	0.0R	0.0R	3
4	73.6N	0.0R	0.0R	0.4R	0.0R	0.0R	0.0R	0.0R	0.2R	0.0R	0.0R	0.0R	4
5	28.6	0.0R	0.0R	0.5	0.0R	0.0R	4.8R	0.0R	0.1R	0.0R	0.0R	0.0R	5 6
6	17.8	0.0R	0.0R	0.5	0.0R	0.0R	12 . 1K	0.0R	0.1R	0.0R	0.0R	0.0R	
7	11.5	0.0R	0.0R	0.3R	0.0R	0.0R	12 . 7K	0.0R	0.0R		0.0R	0.0R	7
8	7.2	0.0R	0.0R	0.2R	0.0R	0.0R	15.1K	0.0R	0.0R		0.0R	0.0R	8
9	50.2N	0.0R	0.0R	0.2R	0.0R	0.0R	15.1K	0.0R	0.0R		0.0R	0.0R	9
10	110 R	0.0R	0.0R	0.1R	0.0R	0.0R	19.2K	0.0R	0.0R		0.0R	0.0R	10
11	125 R	0.0R	0.0R	0.0R	0.0R	0.0R	30.2K	0.0R	0.0R		0.0R	0.0R	11
12	128 R	0.0R	0.0R	0.0R	0.0R	0.0R	36.6K	0.0R	0.0R		0.0R	0.0R	12
13	125 R	0.5R	0.0R	0.0R	0.0R	0.0R	29.7K	0.0R	0.0R		0.0R	0.0R	13
14	120 R	[]X	0.0R	0.0R	0.0R	0.0R	15.5K	7.2	0.0R		0.0R	0.0R	14
15	117 R	[]X	0.0R	0.0R	0.0R	0.0R	3.1K	7.6	0.0R		0.0R	0.0R	15
16	99.5N	25.3	0.0R	0.0R	0.0R	0.0R	2.1K	6.0	0.0R		0.0R	0.0R	16
17	71.0N	7.0	0.0R	0.0R	0.0R	0.0R	2.1K	4.8	0.0R		0.0R	0.0R	17
18	61.7	3.3	0.7R	0.0R	0.0R	0.0R	1.7K	4.0	0.0R		0.0R	0.0R	18
19	52.1	1.5	20.1	0.0R	0.0R	0.0R	1.7K	3.2	0.0R		0.0R	0.0R	19
20	30.2	0.7	25.6	0.0R	0.0R	0.0R	1.4K	2.6V	0.0R		0.0R	1.0R	20
21	14.6	0.4R	13.2	0.0R	0.0R	0.0R	0.9K	1.9V	0.0R		0.0R	25.1?	21
22 23	5.2 0.3R	0.4R	8.5 6.2	0.0R	0.0R	0.0R	0.6K	1.6V	0.0R		0.0R	2.3? 0.6?	22
23		0.4R		0.0R	0.0R	0.0R	0.3R	0.9V	0.0R		0.0R	0.8?	23 24
24 25	0.0R	0.2R	4.6	0.0R 84.1R	0.0R	0.0R	0.1R	0.4R	0.0R		0.0R	0.5?	24 25
26	0.0R 0.0R	0.1R 0.1R	3.2 2.2	48.4R	0.0R 0.0R	0.0R 0.0R	0.1R 0.0R	0.2R 0.1R	0.0R 0.0R		0.0R 0.0R	0.5?	26
20	0.0R 0.1R	0.1R 0.0R	1.3	1.0V	0.0R 0.0R	0.0R 0.0R	0.0R 0.0R	0.1R 0.0R	0.0R		0.0R	0.8	20
28	0.1R	0.0R	0.6	0.3R	0.0R	0.0R	0.0R	0.0R	0.0R		0.0R	1.1	28
29	0.1R	0.0R	0.3R	0.1R	0.0R	0.0R	0.0R	0.0R	0.0R		0.0R	1.0	29
30	0.1R 0.0R	0.0R	0.3R 0.2R	0.0R	0.0R 0.0R	0.0R	0.0R	0.01	0.0R		0.0R	1.0	30
31	0.0R	0.0R	0.21	0.0R	0.01	0.0R	0.0R		0.0R		0.0R	±•±	31
													51
Mean Median	50.5R 28.6R	[1.4]	2.9R 0.0R	4.4R 0.0R	0.0R 0.0R	0.0R 0.0R	6.6R 1.4R	1.4R 0.0R	0.0R 0.0R		0.0R 0.0R	1.2R 0.0R	
Max.Daily	151 R	[0.0] [25.3]	25.6R	84.1R	0.0R 0.0R	0.0R 0.0R	36.6R	0.0R 7.6R	0.0R 0.4R		0.0R 0.0R	25.1R	
Min.Daily	0.0R	[23.3]	0.0R	0.0R	0.0R	0.0R	0.0R	0.0R	0.4R		0.0R	0.0R	
Inst.Max				148 R	0.0R	0.0R	38.2R	8.6R	0.4R		0.0R	42.2R	
Inst.Min	0.0R	[0.0]	0.0R	0.0R	0.0R	0.0R	0.0R	0.0R	0.0R		0.0R	0.0R	
Total 15		[39.92]	86.84 R 1		0.000R		205.2 R		1.261R			34.72 R	
Max.Water Leve		[0.568]	0.472R	0.863R	0.253R	0.124R	0.494R	0.396R	0.321R		0.143R	0.504R	
Min.Water Leve		[0.204]	0.166R	0.132R	0.115R	0.120R	0.121R	0.079R	0.074R		0.111R	0.117R	
	maries									Rating Tabl	es		
							s and rel						Disch
				-			s are use	d	Table		То	Reli	
	[5.8]		? Irregular data use with caution 21 01/07/201							01/07/2019	Present		74.5
	[0.0]		K Minor editing N Rating Extrapol. within x1.5 max flow										
Annual Total [211	9]							TTOM					
ħ.#		li n i min		Rating	-	-	ea						
	imum M 51]	Iinimum [0.0]		Operat									
-	62]	[0.0]		. Rating Totals an									
Monthly [156	[0.000]			-		2400 hou	rs						
rionenty [100	4]	[0.000]	1 191	TCO TOTO	- co berro	sa charily	2100 1100						

41010005 experienced its highest flows in July 2023. Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Site Variab Year	410109 le 141.00 2023/2	O					VER ROAD es/day, A		for relea:	se	Site Year		10921 23/24	
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day	
1	0.0	0.0	0.0	0.7V	0.0	3.4	0.0	0.0	0.0	0.0	0.0	0.0V	1	
2	0.0	0.0	0.0	0.1V	0.0	0.5	0.4	0.0	0.0	0.0	0.0	0.0V	2	
3	0.0	0.0	0.0	0.0V	0.0	0.1	5.5	0.0	0.0	0.0	0.0	0.0V	3	
4	0.0V	0.0	0.0	0.1V	0.0	0.0	0.7	0.0	0.0	0.0	0.0	0.0V	4	
5	0.0V	0.0	0.0	0.2V	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0		
6	0.0V	0.0	0.0	0.2V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5 6	
7	0.0V	0.0	0.0	0.3V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7	
8	0.0	0.0	0.0	0.3V	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	8	
9	0.0	0.0	0.0	0.3V 0.4V	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	9	
10	0.0	0.0	0.0	0.3V	0.0	0.0	0.3	0.0	0.0	0.0	0.0V	0.0	10	
11	0.0	0.0	0.0	0.3V	0.0	4.7R	0.0	0.0	0.0	0.0	0.0V	0.0	11	
12	0.0	0.0	0.0	0.3V	0.0	18.3R	0.0	0.0	0.0	0.0	0.0V	0.0	12	
13	0.0	0.0	0.0	0.3V	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	13	
14	0.0	0.0	0.0	0.3V 0.9V	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	14	
15	0.0	0.0	0.0	0.9V 0.6V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15	
16	0.0	0.0	0.0	0.0V 0.1V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16	
17	0.0	0.0	0.0	0.1V 0.0V	0.0 0.1V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17	
18	0.0	0.0	0.0	0.0	0.1V 0.1V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18	
19	0.0	0.0	0.0	0.0	0.10	1.6	0.0	0.0	0.0 0.5K	0.0	0.0	0.0	19	
20			0.0		0.0		0.0		0.3V	0.0	0.0			
20 21	0.0	0.0 0.6	0.0	0.0	0.0	0.6 0.1	0.0	0.0 1.1K	0.30	0.0	0.0	0.0	20 21	
22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5K	0.0	0.0	0.0	0.0	22	
23	0.0	0.0	0.0	0.0	0.0	0.0	6.3V	0.1K	0.0	0.0	0.0	0.0	23	
23		0.0	0.0		0.0		0.3V 0.7V			0.0			23	
24 25	0.0	0.0	0.0	0.0	0.0	0.0	0.7V 0.1V	0.0K 0.0	0.0	0.0	0.0	0.0	24	
26	0.0	0.0	0.5 0.6V	0.0	0.0	0.0	0.1V 0.0V	0.0	0.0	0.0	0.0	0.0	26	
20	0.0	0.0	0.8V 0.3V				0.0			0.0		0.0	20	
28	0.0	0.0	0.3V 0.3V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	28	
28	0.0	0.0	0.3V 0.4V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	29	
30	0.0	0.0	0.4V 0.8V	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30	
31	0.0	0.0	0.00	0.0	0.0	0.0	0.0		0.0	0.0	0.0V	0.0	31	
51	0.0	0.0		0.0		0.0	0.0		0.0		0.00		21	
Mean	0.0V	0.0	0.1V	0.2V	0.0V	1.0R	0.5V	0.1K	0.0K	0.0	0.0V	0.0V		
Median	0.0V	0.0	0.0V	0.0V	0.0V	0.0R	0.0V	0.0K	0.0K	0.0	0.0V	0.0V		
Max.Daily	0.0V	0.6	0.8V	0.9V	0.1V	18.3R	6.3V	1.1K	0.5K	0.0	0.0V	0.0V		
Min.Daily	0.0V	0.0	0.0V	0.0V	0.0V	0.0R	0.0V	0.0K	0.0K	0.0	0.0V	0.0V		
Inst.Max	0.0V	2.9	0.9V	1.3V	0.7V	36.1R	10.9V	1.4K	1.1K	0.0	0.0V	0.0V		
Inst.Min	0.0V	0.0	0.0V	0.0V	0.0V	0.0R	0.0V	0.0K	0.0K	0.0	0.0V	0.0V		
Total	0.000V	0.757	2.931V	5.223V	0.229V	30.50 R	15.46 V	1.754K	0.820K	0.000	0.000V	0.002V		
Max.Water Leve	0.110V	0.396	0.273V	0.308V	0.255V	0.742R	0.562V	0.316K	0.288K	0.057	0.148V	0.171V		
Min.Water Leve	0.039V	0.044	0.048V	0.042V	0.040V	0.037R	0.036V	0.029K	0.028K	0.028	0.033V	0.035V		
0	ummaries				NT-				-	ating mai				
			All recorded data is continuous and reliable					Rating Tables				Max.Disch		
			ALL	recorded	uaca 15		is and rer	Table			_	Max.	DI 3011	

			All recorded data is continuous and reliable				Max.Disch
			except where the following tags are used	Table	From	То	Reliable
Annual Mean	0.2R		K Minor editing	15	30/05/2018	01/01/2023	41.8
Ann. Median	0.0R		R Rating table extrapolated	16	01/01/2023	Present	31.1
Annual Total	57.68 R		V Operational Data				
			All Totals are in megalitres				
	Maximum	Minimum	Figures refer to period ending 2400 hours.				
Daily Mean	18.3R	0.0R					
Instant	36.1R	0.0R					
Monthly	30.50 R	0.000R					

41010921 experienced its highest flows in December 2023. Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Site Variab Year	410109 le 141.00 2023/2)		DRAIN @ GC Discharge				Available	for relea	ase	Site Year		10940 23/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Day
1	0.1R	0.0R	13.4R	0.3R	0.1R	26.7R	0.1R	19.2R	0.3?	0.2R	0.3	34.2R	1
2	0.1R	0.0R	17.1R	3.6R	0.1R	1.5R	4.4R	29.2R	0.2R	0.2R	7.8R	1.5R	2
3	0.1R	0.0R	30.9R	30.4R	0.1R	0.3R	108 R	3.7R	0.3R			0.2R	3
4	0.2R	0.0R	0.2R	40.8R	0.1R	0.2R	80.3R	0.4	0.4?	5.3R	0.4	0.1R	4
5	7.1R	0.0R	0.1R	59.3R	0.0R	0.1R	41.8R	0.3	0.4?	1.3K		0.3R	5
6	0.8	0.0R	0.1R	21.2R	0.0R	70.5R	9.8R	0.2R	0.4?	25.0R		0.1R	6
7	5.3R	0.0R	0.1R	0.3R	0.0R	54.2R	20.4R	2.2R	0.4?	60.3R		0.1R	7
8	3.1R	0.0R	0.1R	0.2R	0.0R	24.6R	36.1R		0.4?	35.8R		0.1R	8
9	0.3	0.0R	0.0R	0.1R	0.0R	4.7R	75.8R	27.7R	0.4?	9.0R		0.1R	9
10	0.2R	0.0R	0.0R	0.1R	0.0R	2.6R	32.1R	8.9R	0.4?	0.4K		0.1R	10
11	0.2R	0.0R	0.0R	0.1R	0.0R	0.4	3.0R		0.3?			0.1R	11
12	0.1R	0.0R	0.0R	0.0R	0.0R	0.3	0.4	0.4	0.4?			0.1R	12
13	0.1R	0.1R	0.0R	0.0R	0.0R	44.8R	0.4	0.4	0.4?			0.0R	13
14	0.1R	0.3R	0.0R	0.0R	0.0R	42.9R	0.3	0.4	5.4R			0.0R	14
15	0.1R	0.2R	0.0R	0.0R	0.0R	23.0R	0.3	0.4	9.4R			0.0R	15
16	0.1R	0.1R	0.0R	0.0R	0.0R	15.7R	9.8R		3.7?			0.0R	16
17	0.1R	0.1R	0.0R	0.0R	0.0R	42.8R	36.3R		11.2R			0.0R	17
18	0.1R	0.1R	0.0R	0.0R	0.0R	33.6R	40.6R		11.3R			0.0R	18
19	0.1R	0.1R	0.2R	0.0R	0.0R	178 R	64.2R		2.1K			0.0R	19
20	0.1R	0.1R	0.2R	0.0R	0.0R	107 R	39.3R		0.4K			0.0R	20
20	0.1R 0.1R	0.1R 0.1R	0.2R 0.3R	0.0R	0.0R 0.1R	79.6R	14.1R		0.4K 0.3K			0.0R 0.0R	21
22	0.1R 0.1R	0.1R 0.1R	0.3K	0.0R	0.1R 0.1R	58.9R	4.5R		0.3K			0.0R 0.0R	22
22	0.1R 0.1R	0.1R 0.3R	0.3K	0.0R	0.1R 0.1R	42.5R	4.JR 2.9R		0.3K			0.0R 0.0R	23
23	0.1R 0.1R	0.3R 0.4K	0.3K 2.8R	0.0R 0.0R		42.5R 29.1R	2.9R 0.5	0.3R	0.3K			0.0R 0.0R	23
24					0.1R								
26	0.1R	3.0R	0.6	0.0R	0.1R	10.7R	0.4	0.3?	0.3K			0.0R	25
	0.0R	1.0K	1.8R	49.2R	0.0R	1.4	4.3R		0.3K			0.0R	26
27	0.0R	1.1K	15.7R	0.4R	0.0R	0.4	6.1R		0.2R			0.0R	27
28	0.0R	0.3K	0.4R	0.1R	0.1R	0.3R	0.5	0.3?	0.2R		1.5R	0.0R	28
29	0.0R	0.2R	0.4	0.0R	2.0R	0.2R	0.4	0.3?	0.2R			0.0R	29
30	0.0R	1.1K	0.3	0.0R	34.0R	0.2R	2.8		0.2R			0.0R	30
31	0.0R	10.4R		0.1R		0.2R	1.1R		0.2R		9.7R		31
Mean	0.6R	0.6R	2.8R	6.6R	1.2R	29.0R	20.7R		1.6R			1.2R	
Median	0.1R	0.1R	0.2R	0.0R	0.0R	15.7R	4.5R		0.4R			0.0R	
Max.Daily	7.1R	10.4R	30.9R	59.3R	34.0R	178 R	108 R		11.3R			34.2R	
Min.Daily	0.0R	0.0R	0.0R	0.0R	0.0R	0.1R	0.1R		0.2R			0.0R	
Inst.Max	17.9R	14.9R	61.9R	141 R	40.3R	204 R	126 R	39.3R	19.4R			45.4R	
Inst.Min	0.0R	0.0R	0.0R	0.0R	0.0R	0.1R	0.1R	0.1R	0.2R	0.0R	0.0R	0.0R	
Total	19.03 R			206.2 R				116.4 R		166.9 R	237.7 R		
Max.Water Leve	0.578R	0.572R	0.663R	0.807R	0.622R	0.922R	0.780R	0.620R	0.581R	0.685R		0.632R	
Min.Water Leve	0.361R	0.328R	0.241R	0.250R	0.266R	0.405R	0.394R	0.411R	0.416R	0.345R	0.372R	0.354R	

Summaries		Notes	Rating Tabl			
		All recorded data is continuous and reliable		Max.Disch		
		except where the following tags are used	Table	From	То	Reliable
Annual Mean 6.9R		? Irregular data use with caution	25	01/07/2019	21/04/2023	33.5
Ann. Median 0.2R		K Minor editing	26	21/04/2023	Present	6.6
Annual Total 2515 R		R Rating table extrapolated				
		All Totals are in megalitres				
Maximum M	1inimum	Figures refer to period ending 2400 hours.				
Daily Mean 178 R	0.0R					
Instant 204 R	0.0R					
Monthly 897.7 R	19.03 R					

41010940 experienced its highest flows in December 2023.

A significant change in the rating table was identified prior to the month of March, causing some inaccuracy to discharge values, before and thereafter. Due to unsuitable site conditions (weed and silt build up) along with low flow events, valid gauging measurements were difficult to obtain. As a result, the site produced flow data on occasion that was inaccurate, when in fact the site was observed to be in pool conditions. Gauging measurements were captured in both March and May 2024, and grouped with prior measurements in 2023 to form the basis of the recently updated rating table.

2.2 Offtake Sites

	Site Variable Year	41012 141.0 2023,	00		MAIN CANAL AT NARRANDERA REGULATOR Stream Discharge (Ml/d) in megalitres/					vailab	ole	for re	elea	ise	Site Year		10127 23/24
	Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	L	Feb)	Mar		Apr	Мау	Jun	Day
	1	0.0	590	951	2210	2370	407	2740		3600	K	2930	K	1530	1010	17.6K	1
	2	0.0	1090	1080	1660	2710	274	2390		3690	K	3140	Κ	1500	1190	253 K	2
	3	0.0	1700	1190	1220	3090	605	1940		3710	K	3370	Κ	1410	981	198 K	3
	4	0.0	1340	865	702	3010	634	2120		3560	K	3020	Κ	1340	1040	77 . 4K	4
	5	0.0	374	1170	60.1	3010	1270	2180		2770	Κ	2670	Κ	1020	836	19.2K	5
	6	0.0	631	1190	451	2650	2300	2100		1250	Κ	2810	Κ	230	1010	211 K	6
	7	0.0	407	1380	512	2620	3180	1940		1470	K	3090	Κ	515	482	245 K	7
	8	0.0	687	1320	836	2690	2930	461		2060	Κ	3090	Κ	592	58.9	258 K	8
	9	0.0	1120	1020	740	3050	2490	484		2420	Κ	3070	Κ	465	502	232 K	9
	10	0.0	869	1710	1430	2670	3150	633		2760	K	3170	Κ	614	909	4.1K	10
	11	0.0	1110	1220	1880	3220	3180	1120		3300	K		Κ	591	914	83.7K	11
	12	0.0	998	1340	2030	3750	4270	1250		2890	Κ	2480	Κ	809	183	178 K	12
	13	0.0	925	1680	2270	3130	4560	1900		3100	Κ	2790	Κ	789	188	255 K	13
	14	0.0	167	1880	2460	2790	4960	2150		3480	Κ	2700	Κ	813	199	80.0K	14
	15	0.0	0.0	1640	2790	2900	4550	2460		3350	Κ		Κ	682	300	137 K	15
	16	0.0	0.0	1710	2720	2840	4740	2130		2760	K	2330	Κ	819	217	86.1K	16
	17	0.0	66.8	1920	2140	3250	5080	1350		3200	K		Κ	926	462	134 K	17
	18	0.0	898	1920	2690	3170	4890	984		3500	K	1450	Κ	913	325	117 K	18
	19	0.0	1440	1630	2640	3630	4370	1240		3130	K	1240	Κ	1040	234	249 K	19
	20	0.0	978	1710	2410	2990	4350	1530		2890	K	1310	Κ	749	397	331 K	20
	21	0.0	1490	2150	2850	2070	4290	2050		2970		1600	Κ	1120	383	450 K	21
	22	0.0	1200	2090	3580	1730	3860	2420		3180	K	1840		975	486	615 K	22
	23	0.0	1270	2360	2880	2050	3870	2600		3550			K	853	567	665 K	23
	24	0.0	1130	2290	2380	1680	3600	3160	K	3330	K	1950	K		590	645 K	24
	25	0.0	1060	2060	2890	1140	3310	3790	K	3510		1610		1090	664	588 K	25
	26	0.0	1200	1870	2890	1490	2180	3240	K	3210		1570		1140	701	915 K	26
	27	0.0	1110	2080	2540	1610	2380	2940	K	3260	K	1780		989	576	592 K	27
	28	0.0	1170	2250	2860	1720	2020	3470	K	3520	K	1730		1330	908	707	28
	29 30	0.0 89.3	1210 1370	2180 2150	3240 2920	589 153	2630 2260		K K	3480	K	1930 1650		1200 1040	644 258 K	713 661	29 30
	30	89.3 184	1480	2150	2920	100	2780	3230	ĸ			1850		1040	427 K	001	31
	JT	104	1400		2720		2700	5470	Г			10/0			427 K		51
	Mean	8.8	939	1670	2120	2460	3080	2140	K	3070	Κ	2290	Κ	939	569 K	324 K	
Ν	Aedian	0.0	1090	1710	2410	2700	3180	2130	K	3210	Κ		Κ	951	502 K	247 K	
Max.	.Daily	184	1700	2360	3580	3750	5080	3790	K	3710	Κ	3370	Κ	1530	1190 K	915 K	
Min.	.Daily	0.0	0.0	865	60.1	153	274	461		1250	Κ	1240	Κ	230	58.9K	4.1K	
	st.Max	226	2170	3420	5580	4840	6210		K	5850	Κ	4120	Κ	1900	1540 K		
Ins	st.Min	0.0	0.0	640	0.0	0.0	0.0	0.	0K	790		853		18.5	0.0K	0.0K	
	Total	274	29100	50030	65600	73760	95370	6623		8891		7096		28160	17640K	9718K	
Max.Disc															1541.436K1		
Min.Disc	charge	0.000	0.000	639.795	0.000	0.000	0.000	0.00	0K	790.49	97K	853.09	5K	18.487	0.000K	0.000K	
	Sur	nmaries				1	Notes										
							s continuc										
					cent whe	ro the fo	llowing ta	are are	1190	b.d							

	Summaries		Notes
			All recorded data is continuous and reliable except where the following tags are used
Annual Mean	1630 K		K Minor editing
Ann. Median	1400 K		All Totals are in megalitres
Annual Total	595700K		Figures refer to period ending 600 hours.
	Maximum	Minimum	
Daily Mean	5080 K	0.0K	
Instant	6210 K	0.0K	
Monthly	95370K	274K	

410127 experienced its highest flows in December 2023.
--

	Site Variable Year	41012 141.0 2023/	0				NAL AI Dischar			ir	n megalit	tres/day	7, A	vailab	le	for rele	ease	Site Year		410129 023/24
	Day	Jul	Aug	J	Sep	þ	Oct		Nov	7	Dec	Jan	1	Feb)	Mar	Apr	Мау	Jun	Day
	1	0.0	221		428	V	794		753	K	0.0	905		1100	K	910	381	237 V	0.0	1
	2	0.0	302			V	586		881	K	0.0	830		1150	K	955	459	239 V	0.0	2
	3	0.0	316			V	226		1000	K	440	783		1070	K	1040	458	172 V	0.0	3
	4	0.0	180		576		66.	0	962	K	779	817		1120	K	1140	475	163 V	0.0	4
	5	0.0	217			V	0.	0	901	K	1040	762		987	Κ	1110	205	158 V	0.0	5
	6	0.0	220			V	29.		1050	K	771	570		445	K	1050	0.0	255 V	0.0	6
	7	0.0	278			V	230	0	1050	K	1140	308		551		1240	0.0	214 V	0.0	7
	8	0.0	541			v	266		1030	K	890	218		899	K	1130	16.0	194 V	0.0	8
	9	0.0	815			v	363		1100	K	944	34.	4	1180	K	1080	12.7	279 V	0.0	9
	10	0.0	892			v	629		937	K	1080	59.		1080	K	1000	0.0K	224 V	0.0	10
	11	0.0	625			v	576		1060	K	1020	286		955	K	928	0.0K	68.7V	0.0	11
	12	0.0	517		294	v	435		1100	K	1230	308		1090	K	824	0.0K	0.0	0.0	12
	13	0.0	482			v V	538		962		1750	358		910		804	226	2.1V	0.0	13
	14	0.0	377		359		790		823		1710	592		864	K	863	182	2.1V 2.3V	0.0	14
	15	0.0	372			v V	994		788	K	1730	659		1070	K	1020	127	6.7V	0.0	14
	16	0.0	293			v V	994 992				1510	556		1330	K	838	10.2	0.0		16
	17		293				992 793		802 764		1430	72.	1	1360		oso 585	4.7	0.0 0.8V	0.0	17
	18	0.0	168		404	V V	939			ĸ	1600			1360		465				18
		0.0	207		402	V V	1010		845	ĸ	1680	30.	9		ĸ		10.0	206 V	0.0	
	19	0.0			472				982			166				550	357	183 V	0.0	19
	20	0.0	298		632	V V	891 775		970		1460	174		1330		653 635	315	200 V	0.0	20
	21	0.0	847 872			V V	861		850		1370 1220	298		1340 1210	r		290	358 V	0.0	21
	22	0.0							501	K		425				653	335	401 V	0.0	22
	23	0.0	749			V	752		820	K	1110	764		1260		672	292	391 V	0.0	23
	24	0.0	455	V	1160	V	940		634	K	1000	1110	K	1370		745	286 V	591 V	0.0	24
	25	0.0	419		1130	V	989	K	676	K	827	1530	K	1160		669	292 V	546 V	0.0	25
	26	0.0	287	V	1050	V	1060	K	706	K	758	1670	K	1300		607	323 V	428 V	0.0	26
	27	0.0	266	V	976	V	731	K	812	K	721	1380		1400		595	330 V	457 V	0.0	27
	28	0.0	248	V	1020		1070	K	804	K	851	1170	K	1240		471	356 V	290 V	0.0	28
	29	0.0	259	V	1010		1080	K	386		913	1110	K	1120		391	399 V	33.3V	0.0	29
	30	0.0	353		929		1040	K	67.	6	800		K			495	299 V	0.0	0.0	30
	31	0.0	450	V			994	K			916	1230	K			419		0.0		31
	Mean	0.0	411	V	644	V	692	K	834	K	1050	658	K	1120	K	791	215 K	203 V	0.0	
М	edian	0.0	316	V	568	V	790	K	847	K	1020	592	K	1150	K	804	288 K	200 V	0.0	
	Daily	0.0	892	V	1160	V	1080	K	1100	K	1750	1670		1400	K	1240	475 K	591 V	0.0	
	Daily	0.0		V		V		0K	67.		0.0	30.		445	K	391	0.0K	0.0V	0.0	
	t.Max	0.0					1630							1810			687 K		0.0	
	t.Min	0.0		0V	58.			0K		0K	0.0		0K	170		321	0.0K		0.0	
	Total	0.0	1274		1932		2144		2503		32680	2041		3254		24520	6440K		0.0	
Max.Disc																526.312		875.820V	0.000	
Min.Disc	2	0.000			57.95		0.00		0.00		0.000					321.296	0.000K		0.000	
HIII.DISC	narge	0.000	0.00	00	57.95	00	0.00	010	0.00	010	0.000	0.00	010	1/0.00	-11	521.290	0.0001	0.0000	0.000	
		aries									otes									
						All	recor	dec			continuo		rel	iable						

			All recorded data is continuous and reliable
Annual Mean Ann. Median Annual Total	550 K 471 K 201400K		except where the following tags are used K Minor editing V Operational Data All Totals are in megalitres
Deily Meen	Maximum	Minimum	Figures refer to period ending 600 hours.
Daily Mean Instant Monthly	1750 К 2770 К 32680К	0.0K 0.0K 0K	

410129 experienced its highest flows in December 2023.

3.0 Annual Salt Load Summaries

3.1 **Compliance Sites**

Site Variable Year	410083 804.00 2023/24		YANCO MAIN Salt Trans					for rele	ase		Site Year		10083 23/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]T []T []T []T []T []T []T []T</pre>	[]S []S []S []S []S []S []S []S	<pre>[]\$ []\$ []\$ []\$ []\$ []\$ []\$ []\$</pre>	[]S []S []S []S []S []S []S []S	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	[]S []S []S []S []S []S []S []T []T []S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []T []T []T []T []T []S []S []S []S []S []S []S []S	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 20 21 22 34 25 6 27 8 9 30 31
Mean Median Max.Daily Min.Daily Inst.Max Inst.Min Total Max.EC@25C Min.EC@25C	[]T []T []T []T []T []T []T []T	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	
Annual Mean [Ann. Median [Annual Total [naries]S]S]S imum Mir]S []S []S [imum]S]S]S	All 1 excep S T U All 5	recorded of the where the Rating Probe of Lost da Totals are	data is c the follc table su out of wa ata (NRE e in tonn	ter/below approved)	and reli are used instrume	able nt thresh	old				

No salt loads can be produced for site 410083 as no flows are calculated by Ventia. Data between 12 and 27 November 2023 was lost due to the theft of the site battery and vandalism of the logger box. Data between 21 and 24 April 2024 was lost due to the theft of the site battery again.

Site Variak Year	4101 804. 2023	00	CUDGEL CF Salt Trar				OCUDG) , Availabl	e for rele	ease		Site Year		10005 23/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1 2	3.6 18.5	R 0.0R	0.0R 0.0R	0.0R 0.0R	0.0R 0.0R	[]T []T	[]T	0.0R 0.0R	0.0R 0.1R	[]T []T	0.0R 0.0R	[]T []T	1 2
3	16.6		0.0R	0.0R	0.0R	[]T	[]T	0.0R	0.1R	[]T	0.0R	[]T	3
4	9.1		0.0R	0.1R	0.0R	[]T		0.0R	0.0R	[]Т	0.0R	[]T	4
5	3.7		0.0R	0.1	0.0R	[]T	[]Т	0.0R	0.0R	[]Т	[]T	[]Т	5
6	2.4		0.0R	0.1	0.0R	[]T	2.1K	[]Т	0.0R	[]Т	[]Т	[]Т	6
7	1.6	0.0R	0.0R	0.0R	0.0R	[]T	2.2K	[]T	0.0R	[]Т	[]Т	[]Т	7
8	1.0	0.0R	0.0R	0.0R	0.0R	[]T	2.6K	[]Т	0.0R	0.3	[]Т	[]Т	8
9	6.61	N 0.0R	0.0R	0.0R	0.0R	[]T	2 . 7K	[]Т	0.0R	0.3	[]Т	[]Т	9
10	14.5	R 0.0R	0.0R	0.0R	0.0R	[]T		[]Т	0.0R	0.2	[]Т	[]Т	10
11	16.6	R 0.0R	0.0R	0.0R	0.0R	[]T		[]Т	0.0R	0.1	[]Т	[]Т	11
12	17.0		0.0R	0.0R	[]Т	[]T		[]Т	0.0R	0.1	[]Т	[]Т	12
13	16.2		0.0R	0.0R	[]Т	[]T	5.7K	[]Т	0.0R	0.1	[]Т	[]Т	13
14	15.4		0.0R	0.0R	[]Т	[]T		1.4	0.0R	0.1	[]T	[]Т	14
15	15.1		0.0R	0.0R	[]Т	[]T		1.4	[]Т	0.0R	[]T	[]Т	15
16	13.2		0.0R	0.0R	[]T	[]T	0.4K	1.1	[]]T	0.0R	[]T	[]]T	16
17	9.3		0.0R	0.0R	[]]T	[]T		0.8	[]]T	0.0R	[]T	[]]T	17
18	8.0		0.1R	0.0R	[]T	[]T	0.3K	0.7	[]T	0.0R	[]T	[]]]	18
19	6.6		2.1	0.0R	[]]T	[]T	0.3K	0.5	[]]T	0.0R	[]T	[]]T	19
20	3.7		2.9	0.0R	[]T	[]T	0.3K	0.5V	[]T	0.0R	[]T	[]T	20
20	1.8		1.7	0.0R	[]T	[]]T	0.2K	0.3V	[]T	0.0R	[]T	2.4?	21
22	0.6		1.2	0.0R	[]T	[]T	0.1K	0.3V	[]T	0.0R	[]T	0.2?	22
23	0.0		1.0	0.0R	[]T	[]]T	0.1R	0.2V	[]T	0.0R	[]T	0.1?	23
23	0.0		0.7	0.0R	[]T	[]T		0.1R	[]T	0.0R	[]T	0.0?	24
25	0.0		0.5	4.9R	[]T	[]T	0.0R	0.0R	[]T	0.0R	[]T	0.1?	25
26	0.0		0.3?	2.3R	[]T	[]T	0.0R	0.0R	[]]T	0.0R	[]T	0.1?	26
20	0.0		0.2	0.1V	[]T	[]T		0.0R	[]T	0.0R	[]T	0.1	27
28	0.0		0.1?	0.0R	[]T	[]T	0.0R	0.0R	[]T	0.0R	[]T	0.1	28
29	0.0		0.0R	0.0R	[]T	[]T		0.0R	[]T	0.0R	[]T	0.1	29
30	0.0		0.0R	0.0R	[]] []T	[]T		0.01	[]T	0.0R	[]T	0.1	30
31	0.0		0.01	0.0R	[]I	[]T			[]T	0.01	[]T	0.1	31
51						[]I	0.01				[]I		51
Mean	6.5		0.4R	0.2R	[0.0]	[]T		[0.3]	[0.0]	[0.1]	[0.0]	[0.3]	
Median	3.7		0.0R	0.0R	[0.0]	[]T		[0.1]	[0.0]	[0.0]	[0.0]	[0.1]	
Max.Daily	18.5		2.9R	4.9R	[0.0]	[]T		[1.4]	[0.1]	[0.3]	[0.0]	[2.4]	
Min.Daily	0.03		0.0R	0.0R	[0.0]	[]T		[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	
Inst.Max	19.7	R [6.4]	3.7R	10.1R	[0.0]	[]T	[7.4]	[1.7]	[0.1]	[0.4]	[0.0]	[4.0]	
Inst.Min	0.03		0.0R	0.0R	[0.0]	[]T		[0.0]	[0.0]	[0.0]	[0.0]	[0.0]	
Total	201		11R	8R	[0]	[]T	[37]	[7]	[0]	[1]	[0]	[3]	
Max.EC@25C	259	R [347]	350R	250R	[199]	[]T	[369]	[408]	[338]	[247]	[226]	[196]	
Min.EC@25C	156	R [113]	157R	77R	[106]	[]Т	[271]	[67]	[76]	[190]	[191]	[156]	
	ummaries												
-							us and rel						
							gs are use	d					
Annual Mean	[1.2]					use wit	h caution						
Ann. Median	[0.0]			. Minor									
Annual Total	[272]						n x1.5 max	flow					
			R	. Rating	g table ex	xtrapola	ted						

MaximumMinimumR ... Rating table extrapolated[18.5][0.0]T ... Probe out of water/below instrument threshold[19.7][0.0]V ... Operational Data[201][0]X ... Rating table exceeded[201][0]All Totals are in tonnesFigures refer to remining a starting table exceeded Daily Mean Instant Monthly Figures refer to period ending 2400 hours.

Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Site Variable Year	41010921 804.00 2023/24		DRIE MAIN SOU Transport (t,					ease		Site Year		10921 23/24
Day	Jul 2	Aug Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	[]T [[]T [[]T [[]T [0.0V [0.0V [0.0V [0.0V [0.0V [0.0 []T []] []] []] []] []] []] []] []] []]	T [O.0 [O.0 [T [T [T [O.0 [T [T [T [T [O.0 [T []T 0.2V]T 0.0V]T 0.0]T []T]T []T	[]T []T []T []T []T []T []T []T	0.3 0.0 0.0 0.0 []T []T []T []T []T 0.5R 1.9R 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>[]T []T 2.0 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</pre>	<pre>[]T []T []T []T []T []T []T []T</pre>	[]T []T []T []T []T []T []T []T	<pre>[]T []T []T []T []T []T []T []T</pre>	[]T []T []T []T []T []T []T []T	0.0V 0.0V 0.0V 0.0V []T []T []T []T []T []T []T []T	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 22 23 24 25 26 27 28 29 30 31
Mean Median Max.Daily Min.Daily Inst.Max Inst.Min Total Max.EC@25C Min.EC@25C	[0.0] [0.0] [0.0] [0.0] [0.0] [0] [86] [32]	[0.0] [0. [0.0] [0. [0.0] [0. [0.0] [0. [0.0] [0. [0.0] [0. [0.0] [0. [194] [47 [155] [28	1] [0.0] 2] [0.2] 1] [0.0] 2] [0.4] 0] [0.0] 1] [1] 1] [484]	[0.0] [0.0] [0.0] [0.1] [0.0] [0] [345] [131]	[0.2] [0.0] [1.9] [0.0] [4.3] [0.0] [3] [290] [102]	[0.2] [0.0] [2.0] [0.0] [3.8] [0.0] [4] [925] [130]	[0.0] [0.0] [0.1] [0.0] [0.1] [0.0] [0] [262] [206]	[]T []T []T []T []T []T []T	[]T []T []T []T []T []T []T []T	[0.0] [0.0] [0.0] [0.0] [0.0] [0.0] [0] [150] [86]	[0.0] [0.0] [0.0] [0.0] [0.0] [0.0] [0] [298] [72]	
Annual Mean [Ann. Median [Annual Total Maxi Daily Mean [[2.0] [0	num	All recorded except where K Minor R Rating T Probe V Operat All Totals an Figures refer	data is a the folla editing g table ex out of wa tional Dat ce in ton	continuous owing tags ktrapolate ater/below ta nes	and reli are used d instrume	able l ent thresh	nold				

Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Annual

Site Variable Year	4101094 804.00 2023/24				DRAGOOL LA (d) in tor			e for rele	ease		Site Year		410 20	
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Ju	ın	
1	0.0R	0.0R	1.1R	0.0R	0.0R	12.8R	0.0R	5.8R	0.0?	0.1R	[]M	[] M	
2	0.0R	0.0R	1.8R	0.5R	0.0R	0.7R	0.6R	8.3R	0.0R	0.1R	[]M	[] M	
3	0.0R	0.0R	4.8R	7.9R	0.0R	0.1R	15.9R	0.8R	0.0R	1.3R	[]M	[] M	
4	0.0R	0.0R	0.0R	8.6R	0.0R	0.1R	13.0R	0.1	0.1?	1.9R	[]M	[] M	
5	1.0R	0.0R	0.0R	12.6R	0.0R	0.1R	6.8R	0.1	0.1?	0.6	[]M	[] M	
6	0.1	0.0R	0.0R	4.6R	0.0R	9.2R	1.4R	0.1R	0.1?	10.2R	[]M	ſ] M	
7	0.9R	0.0R	0.0R	0.1R	0.0R	13.4R	3.2R	0.6R	0.1?	23.1R	[]M	ſ] M	
8	0.6R	0.0R	0.0R	0.0R	0.0R	6.9R	6.2R	4.2R	0.0?	14.0R	[]M	Г] M	
9	0.1	0.0R	0.0R	0.0R	0.0R	1.0R	8.8R	7.0R	0.0?	3.5R	[]M	г Г] M	
10	0.0R	0.0R	0.0R	0.0R	[]T	0.6R	2.6R	2.1R	0.0?	0.2	[]M	[] M	
10	0.0R	0.0R	0.0R	0.0R	[]T	0.1	0.3R	0.6	0.0?	0.1	[]M	L] M	
												L		
12	0.0R	0.0R	0.0R	0.0R	[]T	0.1	0.1	0.1	0.0?	0.1	[]M	L] M	
13	0.0R	0.0R	0.0R	0.0R	[]T	7.6R	0.0	0.1	0.1?	0.1R	[]M	L] M	
14	0.0R	0.0R	0.0R	0.0R	[]T	6.7R	0.0	0.1	1.2R	0.1R	[]M	L] M	
15	0.0R	0.0R	0.0R	0.0R	[]Т	4.3R	0.0	0.1	2.1R	0.1R	[]M	Ĺ] M	
16	0.0R	0.0R	0.0R	0.0R	[]Т	3.3R	1.6R	0.1	0.8?	0.0R	[]M	[] M	
17	0.0R	0.0R	0.0R	[]Т	[]Т	7.6R	8.0R	0.1	2.2R	0.0R	[]M	[] M	
18	0.0R	0.0R	0.0R	[]Т	[]Т	8.1R	13.4R	0.1	2.4R	[]*	[]M	[] M	
19	0.0R	0.0R	0.0R	[]Т	[]Т	26.7R	13.9R	0.1?	0.6K	[]*	[]M	[] M	
20	0.0R	0.0R	0.0R	[]Т	[]Т	12.3R	7.9R	0.1?	0.1K	[]*	[] M	[] M	
21	0.0R	0.0R	0.0R	[]Т	0.0R	10.4R	2.0R	0.1R	0.1K	[]*	[]M	[] M	
22	0.0R	0.0R	0.0K	[]Т	0.0R	8.7R	0.7R	0.0R	0.1K	[]*	[]M	[] M	
23	0.0R	0.0R	0.0K	[]Т	0.0R	6.8R	0.6R	0.0R	[]*	[]M	[]M	[] M	
24	0.0R	0.0K	0.3R	[]Т	0.0R	5.7R	0.1	0.1?	[]*	[]M	[]M	ī] M	
25	0.0R	0.2R	0.1	[]Т	0.0R	1.8R	0.1	0.1?	[]*	[]M	[]M	ſ] M	
26	0.0R	0.1K	0.3R	[]Т	0.0R	0.2	0.9R	0.1?	[]*	[]M	[]M	ſ] M	
27	0.0R	0.1K	2.0R	0.1R	0.0R	0.1	1.3R	0.0?	[]*	[]M	[]M	[] M	
28	0.0R	0.0K	0.1R	0.0R	0.0R	0.0R	0.1	0.0?	[]*	[]M	[]M	Г] M	
29	0.0R	0.0R	0.1	0.0R	0.4R	0.0R	0.1	0.0?	[]*	[]M	[]M	г Г] M	
30	0.0R	0.1K	0.1	0.0R	18.3R	0.0R	0.6	0.01	0.1R	[]M	[]M	ſ] M	
31			0.1		10.5K							L] 141	
51	0.0R	1.1R		0.0R		0.0R	0.3R		0.1R		[]M			
Mean	0.1R	0.1R	0.4R	[1.6]	[1.0]	5.0R	3.6R	1.1R	[0.4]	[3.3]	[]M	[] M	
Median	0.0R	0.0R	0.0R	[0.0]	[0.0]	3.3R	0.9R	0.1R	[0.1]	[0.1]	[]M	L] M	
.Daily	1.0R	1.1R	4.8R	[12.6]	[18.3]	26.7R	15.9R	8.3R	[2.4]	[23.1]	[]M	[] M	
.Daily	0.0R	0.0R	0.0R	[0.0]	[0.0]	0.0R	0.0R	0.0R	[0.0]	[0.0]	[]M	[] M	
st.Max	3.0R	2.0R	10.7R	[15.5]	[21.3]	48.5R	20.0R	13.5R	[3.9]		[]M	[] M	
st.Min	0.0R	0.0R	0.0R	[0.0]	[0.0]	0.0R	0.0R	0.0R	[0.0]	[0.0]	[]M	[] M	
Total	3R	2R	11R	[35]	[19]	155R	111R	31R	[11]	[55]	[]M	[] M	
EC@25C	536R	520R	591R	[675]	[1059]	955R	577R	766R	[668]	[731]	[]M	[] M	
EC@25C	30R	25R	93R	[179]	[157]	168R	128R	201R	[133]	[483]	[]M	[] M	
Sum	naries				Not	ces								
					data is d									
			exce	ept where	the follo	owing tags	s are used	1						
Mean	[1.6]		* .	Debris	s Effectir	ng Sensor								
dian	[0 1]		0		ilar data		caution							

Ann. Median	[0.1]		? Irregular data use with caution
Annual Total	[433]		K Minor editing
			M Equipment malfunction
	Maximum	Minimum	R Rating table extrapolated
Daily Mean	[26.7]	[0.0]	T Probe out of water/below instrument threshold
Instant	[48.5]	[0.0]	All Totals are in tonnes
Monthly	[155]	[2]	Figures refer to period ending 2400 hours.

The EC sensor provided negative readings since May 2024. It was confirmed to be malfunctioning during the June visit, and an urgent replacement was organised. Ventia field staff attempted to install the new EC sensor in July, but the attempt failed because the cables were stuck inside the piping. The new sensor was successfully installed on August 13, 2024.

Offtake Sites 3.2

Site Variable Year	410127 803.00 2023/24	ł	MAIN CANA Salt Tran			EGULATOR MDFs) (t/	d) in ton	nes/day, .	Available	for rele	Site aseYear		10127 23/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	[]T []T []T []T []T []T 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	126 158 182 144 34.1 58.0 37.1 65.3 104 86.5 114 105 89.5 15.9 0.0 0.0 6.3 85.8 131 95.3 173 187 216 198 170 168 116 198 170 168 116	116 140 160 119 172 193 238 251 179 257 155 157 193 218 200 222 259 259 229 229 229 229 229 229 229	122 ~ 112 ~ 91.3~ 47.5~ 14.6~ 23.7~ 43.9~ 46.9~ 53.5~ 76.7~ 89.0~ 87.1~ 79.6~ 99.1~ 90.5~ 88.4~ 91.2~ 79.3~ 73.1~ 57.6~ 70.4~ 75.9~ 57.8~ 75.8~ 71.4~ 99.7~ 110 ~	110 ~ 130 ~ 184 ~ 186 178 160 164 167 191 168 204 239 201 178 186 190 227 229 []* []* 130 107 121 96.6 64.9 81.9 87.4 94.2 33.8 8.8	23.0 15.8 34.8 37.4 79.6 170 []* []* []* []* []* []* []* []*	153 141 131 155 159 162 134 29.6 30.7 40.4 73.6 87.1 151 []* 254 222 139 105 141 187 273 307 314 373 K 447 K 464 K 458 K 459 K 324 K 370 K 433 K	464 K 472 K 477 K 455 K 356 K 159 K 251 K 258 K 258 K 258 K 258 K 258 K 258 K 259 K 259 K 251 K 253 K 259 K 251 K 253 K 250 K 251 K 253 K 202 K 201 K 201 K 201 K 185 K 185 K 185 K	155 K 152 K 157 K 143 K 143 K 145 K 161 K []* []* 210 K 230 K []* []* 201 K 216 K 148 K 126 K 148 K 126 K 148 K 127 K 192 K 240 230 263 219 213 247 241 270 234 272	219 205 174 162 118 24.1 50.8 54.9 40.9 51.6 50.3 72.6 75.5 68.4 55.2 66.9 87.4 114 141 99.7 []* 99.3 89.4 122 105 109 94.3 126 116 101	99.3 119 100 108 87.3 106 51.2 6.1 53.9 99.5 104 20.8 21.8 23.4 35.0 25.5 58.3 42.3 28.2 50.2 47.7 61.6 71.5 76.4 88.2 98.0 81.7 128 91.2 37.6K 63.1K	2.6K 36.8K 28.8K 12.4K 3.0K 33.2K 39.7K 42.4K 37.9K 0.7K 13.5K 28.6K 40.2K 12.7K 22.7K 14.3K 22.1K 14.3K 22.1K 14.3K 22.1K 18.7K 40.0K 51.8K 64.8K 102 K 123 K 113 K 177 K 101 K 124 122 112	1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 7 8 9 20 21 22 24 25 26 27 28 29 30 31
Annual Mean [1] Ann. Median [1] Annual Total [4] Max:		111 116 216 0.0 259 0.0 3437 390 142	All exce * K T All	2411~ 133~ 40~ recorded ept where . Debri . Minor . Probe . Relia Totals a	[4117] [123] [80] No data is the foll s Effecti editing out of w ble Inter re in ton	nes	[6718] [270] [89] s and rel s are use w instrum	[7302] [222] [85] iable d ent th	[194] [206] [272] [113] [377] [88.6] [5038] [245] [76]	[99.7] [99.3] [219] [24.1] [283] [2.6] [2893] [251] [132]	67.3K 63.1K 128 K 6.1K 167 K 0.0K 2085K 250K 142K	55.6K 38.8K 177 K 0.7K 263 K 0.0K 1667K 349K 231K	
Instant [69	33] 94] 7302]	[0.0] [0.0] [45]	Figu	ires refe	r to peri	od ending	600 hou	rs.					

The EC sensor malfunctioned between 28 September and 2 November 2023. Data from this period was adjusted based on the field readings from Ventia's visits. Logger data collection resumed after new sensors were installed on 2 November 2023.

Site Variabl Year	41012 e 803.0 2023/	0		NAL AT OF nsport (c		MDFs) (t/	d) in toni	nes/day, 2	Available	for relea	Site aseYear		10129 23/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ \end{array} $		$\begin{array}{c} 21.1\\ 28.3\\ 28.5\\ 16.5\\ 19.8\\ 19.6\\ 24.0\\ 47.7\\ 73.9\\ 89.8\\ 64.2\\ 44.5\\ 37.1\\ 29.1\\ 30.6\\ 26.1\\ 18.8\\ 15.1\\ 19.7\\ 32.1\\ 108\\ 128\\ 130\\ 78.9V\\ 60.4V\\ 25.1V\\ 23.1V\\ 27.5V\\ 37.9V\\ 50.7V\end{array}$	50.2V 65.5V 80.8V 73.9V 115 V 102 V 104 V 108 V 56.4V 40.0V 44.8V 37.3V 37.6V 40.5V 45.0V 51.6V 52.2V 56.7V 68.8V 93.7V 126 V 145 V 139 V 164 V 123 V 91.2V 85.0 72.1 60.4	49.9 39.2 14.7 4.2 0.0 1.9 15.0 15.7 22.4 41.7 38.9 29.0 39.5 65.3 105 95.8 60.7 81.4 81.6 67.9 58.0 66.9 56.7 72.1 77.6K 84.0K 56.1K 90.1K 82.3K 80.6K 75.1K	56.2K 63.6K 70.5K 66.4K 62.8K 69.3K 70.8K 69.6K 74.9K 62.1K 70.3K 73.7K 64.5K 53.3K 49.8K 50.0K 49.0K 53.9K 64.2K 62.9K 51.4K 29.5K 45.8K 36.1K 37.0K 37.4K 42.8K 42.7K 20.7K 3.8	0.0 0.0 30.0 60.2 74.9 57.5 83.9 75.7 88.3 111 109 171 341 312 279 212 180 183 190 156 135 107 88.4 68.4 56.8 51.3 47.3 60.3 64.7 52.9 60.3	59.9 56.8 57.7 64.6 62.6 45.2 24.6 17.9 2.8 5.0 23.3 25.2 30.1 55.0 66.5 62.2 8.1 3.1 13.4 16.8 39.7 62.0 106 148 K 208 K 224 K 205 K 179 K 186 K 184 K	159 K 165 K 156 K 140 K 61.7K 74.3K 106 K 125 K 108 K 90.0K 94.1K 76.6K 66.7K 80.7K 102 K 93.8K 96.4K 85.2K 86.3K 88.1K 79.2 83.9 92.1 78.6 79.6 91.4 85.5 75.5	61.9 65.8 69.9 72.4 65.2 68.6 89.8 80.3 73.2 66.2 74.7 74.5 69.6 73.1 88.7 77.8 55.3 44.5 54.8 68.3 68.5 70.7 71.9 78.2 70.3 63.9 63.9 62.6 48.3 39.1 51.0 43.8	39.7 48.3 49.8 53.7 21.8 0.0 0.0 1.7 1.4 0.0K 0.0K 21.9 14.0 9.9 0.8 0.4 0.8 34.3 34.4 29.1 34.7 31.8 32.1V 33.2V 38.8V 39.2V 42.4V 46.9V 34.8V	27.4V 27.7V 20.4V 19.4V 18.8V 30.5V 25.6V 23.5V 33.9V 27.0V 8.3V 0.0 0.3V 0.3V 0.3V 0.3V 0.3V 0.3V 0.	0.0 []T []T]T []T]T []T]T []T]T []T]T []T]T []T []T []T]T []T]T []T]T []T]T]T []T]T []T]T]T]T]T]T]T]T]T]T	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Annual Mean Ann. Median Annual Total [Ma Daily Mean [Instant [0.0 0.0 0.0 0.0 191 148 mmaries [57.7] [52.0] 19550] ximum 341] 434] [3505]	44.6V 29.1V 130 V 15.1V 165 V 0.0V 1383V 302V 127V Minimum [0.0] [0.0] [0]	9.7V 2482V 353V 102V All exce K T V All	0.0K 1669K 191K 96K recorded ept where Minor Probe Opera Totals a	data is of the follo editing out of wa tional Dat	0.0 3505 350 88 tes continuou owing tag ater/belo ta nes	79.5K 57.7K 224 K 2.8K 311 K 0.0K 2465K 299K 99K 	26.0K 2881K 250K 97K iable d ent thresh	32.6 2063 190 90	23.2K 30.4K 53.7K 0.0K 79.2K 0.0K 696K 208K 124K	25.7V 24.8V 74.9V 0.0V 111 V 0.0V 798V 238V 180V	[0.0] [0.0] [0.0] [0.0] [0.0] [0] [275] [165]	

Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

4.0 Annual EC Summaries

Compliance Sites 4.1

Site Variable Year	410083 820.00 2023/24		Ο MAIN SOUTHE uctivity (μS/				e for rele	ease		Site Year		L0083 23/24
Day	Jul Au	lg Se	p Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	200 [218 [227 [224 [259 [337 [361 [347 [337 646 349 612 360 [349 612 353 [[]T 489 []T [[<	614]T 602]T 584]T []T []T []T []T []T 487]T 487]T 489]T 482 484 421 418]T 358]T 281]T 245 147	169 178 169 167 173 146 133 145 139 120 103 105 88.8]T 96.4]T 88.5]T 83.9]T 88.0]T 95.4]T 87.4 88.6 97.6 101 92.6 81.6 78.4V 87.2V 75.2V 56.5V	56.6V 74.9V 86.7V 105 V 93.0V 108 V 157 V 150 V 150 V 150 V 175 V []U []U []U []U []U []U []U []U	137 234 288 275 257 254 245 247 238 229 232 276 302 349 437 397 311 306 343 329 317 331 346 323 282 266 250 228 222 232 232 218	206 198 178 126 158 179 195 111 177 193 199 202 197 201 216 206 188 214 159 184 224 235 243 260 284 []T 252 260 301 322 297	289 286 306 328 262 256 260 263 285 []T []T []T 194 169 170 173 177 []T 196 154 190 165 168 176 189 194 164	196 168 159 165 173 187 198 176 229 177 165 185 202 172 207 194 195 197 199 V 251 V 235 V 214 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 231 V 297 V 286 V 260 V 260 V 260 V 260 V 260 V 260 V 260 V 260 V 260 V 260 V 260 V 270 V 260 V 270 V 2 200 V 2 200 V 20 V 2 V 2	244 V 235 V 242 V 305 V 308 V 195 V 243 V 243 V 294 V 282 V 273 V 314 V 367 V 392 V []T []T []T []T []T 425 V 395 V []U []U []U 362 360 356 349 343 345	346 338 340 325 304 333 351 330 318 302 298 253 251 289 303 318 335 319 316 308 329 322 307 302 298 292 284 280 278 292 284 280 278 274 203	174 187 216 220 231 242 276 293 289 []T []T []T 293 299 292 []T []T 293 313 337 []T 337 350 311 283 289 289	$1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\5\\16\\7\\8\\9\\20\\21\\22\\3\\24\\5\\26\\7\\28\\9\\30\\31$
Median Max.Daily Min.Daily Inst.Max	[308] [655 [337] [717 [361] [786 [200] [443 [383] [872 [193] [425] [571] [762] [147] 96.4V] 187 V] 56.5V] 219 V	[117] [116] [177] [56.6] [228] [23.1]	281 275 437 137 465 106	[212] [202] [322] [111] [361] [64.5]	[217] [194] [328] [154] [391] [129]	[207] [197] [297] [159] [324] [149]	[316] [316] [425] [195] [462] [186]	305 307 351 203 388 175	[278] [289] [350] [174] [366] [137]	
Annual Mean [2 Ann. Median [2] Max: Daily Mean [7]	maries 55] imum Minimu 86] [56. 72] [23.	5]	All recorded except where T Probe U Lost V Opera Figures refe	data is of the follo out of wa data (NRE tional Dat	continuou owing tag ater/belo approved ta	us and rel gs are use ow instrum d)	iable d ent thres	hold				

Data between 12 and 27 November 2023 was lost due to the theft of the site battery and vandalism of the logger box. Data between 21 and 24 April 2024 was lost due to the theft of the site battery again. Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Site Variable Year	4101000 820.00 2023/24		CUDGEL CR Conductiv					e for rele	ease		Site Year		10005 23/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	176 204 204 206 217 229 227 221 221 221 222 216 213 215 222 219 216 211 207 210 207 211 208 206 198 192 203 221 236 229 213	240 253 261 275 284 262 258 257 258 260 259 195 220 163 156 155 151 155 150 164 170 173 168 151 152 157 162 174 173 168 165	167 169 175 174 173 175 172 178 179 186 183 182 195 199 ? 193 213 200 178 191 216 245 255 255 255 256 252 ? 241 223 ? 218 221	226 231 233 226 207 208 208 211 215 218 212 217 212 218 213 214 217 220 225 227 220 223 221 136 85.6V 95.6V 104 V 113 V 115 V 118 V	120 127 134 137 144 149 149 159 161 169 173 []T []T	<pre>[]T []T []T []T []T []T []T []T</pre>	[]T 292 296 286 295 302 308 314 320 315 306 292 287 287 291 293 297 298 302 303 308 309 311 316 323 331 335	341 336 344 295 197 []T []T []T []T []T []T []T []T []T 328 300 294 290 285 283 285 V 285 V 285 V 285 V 285 V 285 V 285 V 285 V 285 V 285 V 285 V 290 V 297 V 297 V 303 303 303	306 V 309 V 309 V 307 V 309 V 307 V 309 V 315 V 319 321 319 322 320 263 []T []T	[]T 237 229 221 223 222 223 224 222 223 224 224 225 224 225 224 225 224 225 218 202 201 204 210 205	204 203 201 197 []T []T	<pre>[]T []T []T []T []T []T []T []T</pre>	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 324 25 26 27 28 29 30 31
Mean Median Max.Daily Min.Daily Inst.Max Inst.Min	213 215 236 176 259 156	200 173 284 150 347 113	201 ? 192 ? 256 ? 167 ? 350 ? 157 ?	233 V 85.6V 250 V 76.7V	[147] [149] [173] [120] [199] [106]				[310] [310] [322] [263] [338] [76.4]	[219] [223] [237] [200] [247] [190]	[201] [202] [204] [197] [226] [191]	[177] [180] [193] [162] [196] [156]	
Annual Mean [2 Ann. Median [2 Max Daily Mean [3	maries 27] 20] :imum M: 44] .08]	inimum [85.6] [66.9]	All exce ? T V	recorded pt where . Irregu . Probe . Operat	data is c the follo lar data out of wa ional Dat	continuou wing tag use with ter/belo ca	s and rel s are use caution w instrum	iable d ent thres	hold				

Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Annua Ann.

Dail

Day Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun 1 [] T	Site Vari Year	able	410109 820.00 2023/2								VER ROAD Availabl	(GMSRR) e for rel	ease				Site Year		10921 23/24
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Day		Jul	Aug	S	ep	Oct	Nov		Dec	Jan	Feb	Ma	ar	Ap	or	May	Jun	Day
Median [45.7] [165] [324] [279] [220] [199] [639] [232] []]T [] <td>2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30</td> <td></td> <td>[]T []T 52.3 43.6 59.8 41.6 45.7 []T []T []T []T []T []T []T []T</td> <td>[]] []]]]</td> <td>r [r [r [r [r [r [r [r [r [r 34 r 30 r 30 r 41</td> <td>]T]T]T</td> <td>385 V 400 V 258 V 253 V 221 V 226 V 223 V 243 V 244 V 244 V 279 V 367 V 370 V 37</td> <td>I I I</td> <td></td> <td>157 152 167 183 []T []T []T []T []T 147 186 222 228 241 247 257 []T 211 226 235 270 257 175 135 139 []T []T []T []T []T</td> <td><pre>[]T 639 724 795 821 779 758 777 802 []T 438 434 544 634 654 634 654 654 665 665 644 298 226 V 344 V 433 V 492 V 440 426 445 446</pre></td> <td>[]T []T []T []T []T []T []T []T</td> <td></td> <td>] T T T T T T T T T T T T T T T T T T T</td> <td></td> <td>]T]T]T]T]T]T]T]T]T]T]T]T]T]</td> <td>[]T []T []T []T []T []T []T []T</td> <td>288 275 262 []T []T []T []T []T []T []T []T</td> <td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 3 24 5 26 27 8 29 30 31</td>	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30		[]T []T 52.3 43.6 59.8 41.6 45.7 []T []T []T []T []T []T []T []T	[]] []]]]	r [r [r [r [r [r [r [r [r [r 34 r 30 r 30 r 41]T]T	385 V 400 V 258 V 253 V 221 V 226 V 223 V 243 V 244 V 244 V 279 V 367 V 370 V 37	I I I		157 152 167 183 []T []T []T []T []T 147 186 222 228 241 247 257 []T 211 226 235 270 257 175 135 139 []T []T []T []T []T	<pre>[]T 639 724 795 821 779 758 777 802 []T 438 434 544 634 654 634 654 654 665 665 644 298 226 V 344 V 433 V 492 V 440 426 445 446</pre>	[]T []T []T []T []T []T []T []T] T T T T T T T T T T T T T T T T T T T]T]T]T]T]T]T]T]T]T]T]T]T]T]	[]T []T []T []T []T []T []T []T	288 275 262 []T []T []T []T []T []T []T []T	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 3 24 5 26 27 8 29 30 31
All recorded data is continuous and reliable except where the following tags are used nual Mean [332] T Probe out of water/below instrument threshold n. Median [258] V Operational Data Maximum Minimum Figures refer to period ending 2400 hours. aily Mean [821] [41.6]	Media Max.Dail Min.Dail Inst.Ma	n y y x	[45.7] [59.8] [41.6] [85.9]	[165 [188 [163 [194	[32] [41] [30] [47	4] 4] 8] 1]	[279] [447] [221] [484]	[220 [317 [164 [345]]]	[199] [270] [135] [290]	[639] [821] [226] [925]	[232] [244] [219] [262]	[[[[[] T] T] T] T	[[[[[] T] T] T] T	[113] [113] [113] [150]	[269] [288] [224] [298]	
	n. Median aily Mean	[33 [25 Maxi [82	32] 58] 1mum M 21]	[41.6]		All exc T . V .	recorde cept wher Prok Oper	d data i e the fo e out of ational	s c llc wa Dat	continuou: owing tag: ter/below .a	s and rel s are use w instrum	iable d ment thres	shold						

Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Site Variable Year	41010 820.0 2023/	0			ORAGOOL L cm) in µS			le for re	lease		Site Year		1010940 2023/24
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1	287	121	162	247 V	479	790	294	498	244 K	548	[]M	[]	M 1
2	330	190	174	211 V	414	804	245	466	237 K	531	[]M	[]	М 2
3	321	184	222	428 V	385	872	249	371	208 K	554	[]M	[]	М З
4	255	162	253	359 V	391	924	270	422	268 K	610	[]M		M 4
5	241	132	289	354 V	432	890	270	506	310 K	689	[]M	[]	м 5
6	278	207	320	387 V	493	330	241	514	264 K	691	[]M		М б
7	272	202	294	380 V	580	422	263	472	235 К	639	[]M		M 7
8	295	216	292	459 V	614	399	298	444	214 K	650	[]M		M 8
9	293	237	287	475 V	601	336	188	419	208 K	644	[]M		M 9
10	266	249	247	413 V	[]T	382	139	391	203 K	600	[]M		M 10
11	273	326	303	420 V	[]T	508	174	382	184 K	573	[]M		M 11
12	298	311 242 K	308	450	[]T	491	248	338	215 K	573	[]M		M 12
13 14	331 394	242 К 219 К	350	437 V 378 V	[]T	299 260	214	433	292 K 364 K	570 577	[]M		M 13
14 15	394 353	219 К 270 К	359 365	378 V 384	[]Т []Т	260 317	248 238	560 381	364 K 379 K	581	[]M []M		M 14 M 15
16	347	270 К 307 К	305	402	[]T	345	257	303	379 K 353 K	587	[]M []M		M 15 M 16
17	369	267 K	248	402 []T	[]T	300	372	275	334 K	620	[]M		M 10 M 17
18	344	268 K	219	[]T	[]T	410	555	306	369 K	[]*	[]M		M 18
19	413	289 K	200	[]T	[]]T	255	359	333 K	493 K	[]*	[]M		M 19
20	446	287 K	212	[]T	[]]T	189	328	339 K	547 K	[]*	[]M		M 20
21	347	289 K	202	[]T	457	218	234	342 K	569 K	[]*	[]M		M 21
22	386	256 К	189	[]T	444	244	241	335 K	569 K	[]*	[]M	[]	M 22
23	363	221 К	177	[]Т	417	268	312	323 K	[]*	[]M	[]M	[]	M 23
24	420	169	177	[]Т	449	325	276	339 K	[]*	[]M	[]M	[]	M 24
25	360	165	191	[]Т	459	284	337	358 K	[]*	[]M	[]M	[]	M 25
26	306	209	290 V	[]Т	485	276	363	325 K	[]*	[]M	[]M	[]	M 26
27	287	161	227 V	290	451	281	352	260 K	[]*	[]M	[]M		M 27
28	254	187	230 V	339	389	286	285	228 K	[]*	[]M	[]M		M 28
29	245	199	275 V	385	207	291	283	240 K	[]*	[]M	[]M		M 29
30	250	141	277 V	514	903	294	333		586	[]M	[]M	[]	M 30
31	232	166		584		274	432		532		[]M		31
Mean	318	221 K	255 V	[395]	[476]	405	287	376 K		[602]	[]M		М
Median	306	216 K	250 V	[387]	[451]	317	270	358 K		[587]	[]M		Μ
Max.Daily	446	326 K	365 V	[584]	[903]	924	555	560 K		[691]	[]M		М
Min.Daily	232	121 K	162 V	[211]	[207]	189	139	228 K		[531]	[]M		М
Inst.Max	536	520 K			[1060]	955	577		[668]				M
Inst.Min	29.8	25 . 1K	92.6V	[1/9]	[157]	168	128	201 K	[133]	[483]	[]M	Ĺ	Μ
	maries				No								
					l data is								
Decrea 1 Magaz	E 0 1				the foll			ed					
-	50]				s Effecti	ng Senso	r						
Ann. Median [3]	15]			Minor		unation							
Mav	imum	Minimum			ment malf out of w		ow instrum	ment thre	shold				
	24]	[121]			tional Da				0.1010				
-	60]	[25.1]		-	r to peri		~ 2400 ho						

Figures refer to period ending 2400 hours.

The EC sensor provided negative readings since May 2024. It was confirmed to be malfunctioning during the June visit, and an urgent replacement was organised. Ventia field staff attempted to install the new EC sensor in July, but the attempt failed because the cables were stuck inside the piping. The new sensor was successfully installed on August 13, 2024. Operational data was used for flow events when the site was dry or when no logger readings were obtained during the visit.

Offtake Sites 4.2

Site Variable Year	410127 820.00 2023/24	MAIN CANAL AT NARRA Conductivity (µS/cm		Available for re	elease		Site Year		410127 023/24
Day	Jul Aug	Sep Oct	Nov Dec	Jan Feb	Mar	Apr	Мау	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12	[]T 353 []T 245 []T 178 []T 175 275 154 269 153 262 151 270 158 272 154 276 164 275 170 273 176	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83.7~ 93.6 91.8~ 95.6 99.0~ 96.0 103 98.2 98.8 104 101 123 104 []* 103 []* 104 []* 105 []* 106 []*	92.921598.3213112214121213122214128211114210107203106183106156110131115123	88.2 80.7 77.5 78.9 83.8 85.9 86.8 []* []* 111 122 []*	239 227 206 203 190 175 164 154 154 146 140 142 149	164 166 170 173 174 176 176 169 179 182 190 189	250 242 244 264 263 270 275 271 277 269 268	1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	270161272158275158265160262159271152276162278191272283274292274268277175276168277175275193276191	191 88.4~ 193 84.9~ 203 81.3~ 216 77.7~ 225 74.2~ 225 70.6~ 227 67.1~ 231 63.5~ 232 59.9~	107 []* 106 []* 107 195 111 []* 116 []* 121 177 []* 166 []* 147 105 128 103 122 98.8 []* 95.9 []* 94.6 []* 91.6 98.8 90.6 101 91.0 109 96.4 102 94.3 97.0 98.4	132 128 []* 135 172 129 174 108 172 131 178 121 189 120 204 116 222 113 196 [197 95.8 238 96.1 259 93.3 221 90.7 196 88.6 191 208	[]* []* 151 154 146 145 152 162 196 K 218 223 * 225 227 226 231	159 140 135 136 157 208 227 222 []* 170 175 186 162 159 158 161 162	193 195 195 209 213 201 210 209 212 211 216 221 233 236 235 236 244 246	262 268 273 274 275 271 268 260 240 275 316 315 319 323 285 292 285 285 284	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Median Max.Daily Min.Daily Inst.Max	[272] 191 [274] 170 [278] 353 [262] 151 [293] 390 [259] 142	217 ~ 77.7~ 314 ~ 131 ~ 135 ~ 42.2~	[101] [119] [103] [103] [121] [195] [83.7] [93.6] [123] [202] [79.7] [91.3]	[163] [146 [173] [128 [259] [215 [92.9] [88.6 [270] [222 [89.2] [85.2	[242] [77.5] [245]	[173] [162] [239] [135] [251] [132]	201 196 246 164 250 142	275 271 323 240 349 231	
Annual Mean [1 Ann. Median [1 Max: Daily Mean [3]	maries 77] 74] imum Minimum 53] [42.2 90] [40.0	All recorded of except where t * Debris K Minor e T Probe of ~ Reliabl	data is continuou the following tag Effecting Sensor editing out of water/belo le Interpolation to period ending	as and reliable are used w instrument th					

The EC sensor malfunctioned between 28 September and 2 November 2023. Data from this period was adjusted based on the field readings from Ventia's visits. Logger data collection resumed after new sensors were installed on 2 November 2023.

4101 2023/			Site Year		ease	e for rel)	Site 410129 Variable 820.00 Year 2023/24						
D	Jun	J	May	Apr	Mar	Feb	Jan	Dec	Nov	Oct	Sep	Aug	Jul	Day
	36	18	193	174	113	240	110	93.3	124	106	195	165	150	1
Г] T	[194	175	115	240	114	97.3	120	111	206	156	149	2
] T]	197	181	112	242	123	110	117	108	209	151	150	
Г] T	[199	187	106	239	131	128	115	106	215	152	151	
] T]	199	176	98.0	236	137	121	116	106	256	152	149	
] T	ſ	200	174	109	231	132	124	110	110	293	148	150	
] T	ſ	200	175	121	225	134	123	113	108	312	145	150	
] T	ſ	202	172	119	197	137	141	112	98.5	327	147	150	
] T	ſ	202	174	114	176	137	156	113	102	283	151	151	
] T	ſ	202	175	110	167	137	171	110	110	269	168	153	
] T	ſ	200	175	135	157	135	179	111	112	228	170	158	
]T	r	198	176	151	143	136	232	111	111	212	142	161	
	лц] Т	L r	197	166	144	140	140	325	112	122	187	129	163	
] T	L	196	128	141	129	154	303	108	137	188	129	165	
] T	ſ	199	120	146	129	168	269	105	176	195	137	167	
	т[] Т	L [199	129	154	128	187	235	103	160	205	148	170	
] T] T	L	197	128	154	128	166	209	104	127	205	140	177	
		L					147							
] T	L	201	133	160	118		189	106	145	235	149	177	
] T	l	209	158	166	110	132	188	109	135	243	159	178	
] T	L	208	182	173	108	160	178	108	126	247	180	178	
] T	[208	167	180	109	221	164	101	125	249	211	177	
] T	L	216	173	180	109	243	145	98.4	129	241	245	179	
] T	l	217	181	179	111	232	133	93.3	125	235	290	181	
] T	[211	188	175	112	221	114	94.9	127	235	287	183	
] T	[216	189	175	113	226	114	91.3	131	227	242	185	
] T	[228	200	176	102	223	112	88.3	132	194	152	184	
] T	[233	197	176	109	271	109	87.7	128	156	157	186	
] T	[235	198	171	115	292	118	88.6	139	138	157	186	
		26	231	196	166	113	268	118	90.0	126	119	177	189	
	56	26	229	194	172		253	110	89.5	129	108	179	190	
			213		174		249	110		126		188	187	31
-		[23	207	172	147	154	178	159	105	124	221	171	169	
		[26	202	175	154	128	154	133	108	126	221	156	170	
1		[26	235	200	180	242	292	325	124	176	327	290	190	
]		[18	193	128	98.0	102	110	93.3	87.7	98.5	108	129	149	
]		[27	238	208	190	250	299	350	130	191	353	302	191	
]	65]	[16	180	124	89.7	97.3	98.8	88.4	85.1	96.2	102	127	148	st.Min

	Summar	ies		
				All
				exce
Annual Mean	[165]		т.
Ann. Median	[159]		
				Figu
	Maximu	m	Minimum	2
Daily Mean	[327]	[87.7]	

Instant [353] [85.1]

Notes -----

recorded data is continuous and reliable

cept where the following tags are used... ... Probe out of water/below instrument threshold

gures refer to period ending 600 hours.

5.0 Annual Site Summaries for sites affected by back-up

5.1 Compliance Sites:

No compliance sites were affected by backup during the reporting period of 2023/2024.

5.2 Offtake Sites:

No offtake sites were affected by backup during the reporting period of 2023/2024.

6.0 Site visited Summary

Table 1 summarises the visited records of all the MI sites monitored by Ventia staff during the 2023/24 financial year.

Table 1 Site visited summary during the 2023/24 financial year

		Site	No. of	No. of Data		Discharge Measurements	Sensor	
Category	Site No.	Acronym	Visits	Downloads	No. of Meas.	Comments	Changes	General Comments
	410083	YMS	12	12	0	N/A	0	No flow on site and the gate was shut throughout the monitoring year. Batteries was stolen twice (November 2023 and April 2024), and the logger box was damaged in November 2023, causing some data missing.
nce sites	41010005	ROCUDG	12	12	2	Both gaugings were performed at very low flow conditions.	1	Site was at low flow or pool only condition during the most visits and dry during November 2023 and January 2024. Rating table needs to be updated by acquiring good measurements. New EC sensor (S/N PC4EB-12620) was installed on 12 August 2024.
Compliance	41010921	GMSRR	12	12	3	Rating table at site is very old (2018) and will be updated when enough gauging data is collected.	0	Site was dry or pool only during the majority visits but flowing during the rest five visits.
S	41010940	LAG	12	12	4	Gaugings were performed at very low flow conditions and affected by silt and heavy weed severely. Rating table requires additional updating by acquiring further good measurements	1	Site was dry or pool only during the majority visits and had small flow during the rest visits. Rating table needs to be updated by acquiring good measurements. New EC sensor (S/N PC4EB-12503) was installed on August 13, 2024.
Offtake sites	410127	Main Canal	12	12	12	Gauging was performed in each month except July 2023 when site was not flowing. Two gaugings were carried out in May 2024. Gaugings in February and March 2024 were considered as fair measurements due to the on-site major works and weed influences.	3	Site was flowing through out the financial year except pool only in July 2023. AFFRA system and WQ sensors performed well and provided good data. New EC (S/N PC4EB-7616), PH (S/N PPHRB-11313), and Turbidity (S/N PNEPB_TURB-11618) sensors were installed on 27 September 2023.
ō	410129	Sturt Canal	12	12	15	Gauging was performed during each visit except when the site was no flowing in July 2023, May and June 2024.	0	Site was flowing throughout the financial year except pool only in July 2023, May and June 2024. AFFRA system and WQ sensors performed well and provided good data.
	410085	LMC	12	12	3	Weed on edges. Loose weed floating under and around boat.	0	Site was flowing throughout the monitoring year. Data during July 2023 was not recorded due to cables to both EC and Pressure sensor chewed by water rats.
	410174	MDJWE	12	12	6	Significant weed floating downstream and interfering with ADCP. Rating tables updated in July 2024	1	Site was flowing throughout the monitoring year. Data between December 2023 and January 2024 was not recorded due to gas line chewed by water rats. Rating table was updated to 14.0 in July 2024 after adding the good gauging results from this financial year. New EC sensor (S/N PC4EB-11318) was installed on 24 January 2024.
N/A	41010955	MIRMCN	12	12	5	Two of five gaugings were considered as good measurements. The rest gaugings were performed at high flow situations. Gauging accuracy was likely affected by site conditions including high turbulence on drain edges, bridge pylon collecting debris, partial control blockage, and substantially weed drifting downstream.	1	Site was flowing throughout the financial year. Rating table needs to be updated by acquiring good measurements. New EC sensor (S/N PC4EB-11146) was installed on 2 November 2023.
	CD-2-1922	CD-2- 1922	12	12	2	Two gaugings were performed on two days in November 2023. However, the quality of both measurements was not verified due to flowmeter on site was malfunction.	0	Site was dry or had very small flow throughout the monitoring year. Flowmeter has been malfunctioning since November 2023 and needs replacing.
	MS-2MDJY- 01	MDJY	12	12	4	Four gaugings were performed. Rating table requires updating.	0	Site was flowing throughout the year. Rating table needs to be updated by acquiring good measurements.
Total					56		7	

7.0 EWA's 2023/2024

Table 2 EWA summary during the 2023/24 financial year

WA EF	Site ID	Name	EXTRA WORKS DESCRIPTION	Issued by	Total Value (ex GST)	Status
	Multiple	Multiple	Ponsel C4E EC x 5 - Ponsel turb x 1 - Ponsel PH x 1 - New program and labour	РВ	\$21,022	Complete
	Multiple	Multiple	4G modem upgrades	РВ	\$2,135.29	Complete
	Roaches dam	Roaches dam	Roaches dam site installation	РВ	\$57,313.29	NYC
	Multiple	Multiple	Ponsel C4E EC X 2 including new programs and labour		\$7,935	Complete

8.0 Measurement Summary

8.1 410127 MAIN CANAL @ NARRANDERA REGULATOR

Table 3 Measurement Summary at Narrandera during the 2023/24 financial year

Meas No.	Date	Time	AFFRA Sensor Q, (MI/day)	Calibration Measurements Q, Measured Discharge (MI/day)	Deviation (%)
128	23/08/2023	13:45	890.784	950.400	-6.27%
129	27/09/2023	8:46	1500.250	1503.878	-0.24%
130	26/10/2023	7:06	2352.845	2401.834	-2.04%
131	29/11/2023	6:58	686.880	719.366	-4.52%
132	20/12/2023	7:15	3299.616	4060.368	-18.74%
133	23/01/2024	13:24	3054.845	3158.870	-3.29%
134	21/02/2024	7:41	2802.816	3037.392	-7.72%
135	20/03/2024	8:04	1227.917	1375.142	-10.71%
136	24/04/2024	8:20	1023.926	1068.163	-4.14%
137	29/05/2024	12:35	213.408	278.986	-23.51%
138	29/05/2024	14:01	207.360	269.136	-22.95% *
139	26/06/2024	10:41	461.981	506.995	-8.88%

* Measurement was performed on windy days.

Date Measured: Wednesday, August 23, 2023

Discharge Measurement Summary Date Measured: We Recorded file is located under My Documents SonTek Data (YYYY_MM_DD) StationaryDataFiles

Recorded file is located under My Documents SonTek Data		a YYYY_MM_DD StationaryDataFiles				
Site Informatio	n		Measurement Information			
Site Name		NARRANDERA	Party			PN
Station Number	tation Number 410127		Boat/Motor			M9
Location		CABLEWAY	Meas. Number			128
System Informa	ation	System Setup			Units	
System Type	RS-M9	Tagline Azimuth (deg)	355.	1	Distance	m
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s
Firmware Version	4.10	Rated Discharge (m3/s)	10.3	1	Area	m2
		Discharge Method	Mid-Sec	tion	Discharge	m3/s
		Measurement Quality			Temperature	degC
		Temperature (C)	13.0)		
Discharge Calculation Settings				Dischar	ge Uncertainty	
Track Reference		System (default)		Category	ISO	Stats
Depth Reference		Vertical Beam		Depth	0.10%	0.28%
Discharge Resu	lts			Velocity	0.07%	0.96%
Total Area			75.815	Width	0.10%	0.10%
Mean Velocity			0.145	# Cells	0.10%	
Total Width			32.000	# Stations		
Total Q			11.000	Instrumer		0.25%
Maximum Measure	d Depth(r	n)	3.089	Overall	1.51%	1.03%
Maximum Measure	d Velocity	(m/s)	0.207			
Mean Flow Angle			-1.234			
Rated Discharge		10.310				
% difference Q			6.692			
Water Temperature	e (Indepe	ndent)	13.900			
Mean Water Tempe	erature		14.045			
Mean Weighted Ga	uge Heigł	nt	0.000			

Discharge Measurement Summary Date Measured: Wednesday, September 27, 2023

Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Site Information	1		Measurement I	nformatio	on	
Site Name Station Number Location		narrandera 410127 cableway	Party Boat/Motor Meas. Number			PN GR M9 129
System Informa	tion	System Setup			Units	
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality Temperature (C)	4.7 0.0 17.3 Mid-Sec 17.0	6 tion	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calcu	Discharge Calculation Settings				ge Uncertainty	
Track Reference Depth Reference		System (default) Vertical Beam		Category Depth Velocity	ISO 0.10% 0.06%	
Discharge Resul Total Area Mean Velocity Total Width Total Q Maximum Measured Maximum Measured Mean Flow Angle Rated Discharge	d Depth(r	·	79.346 0.219 31.500 17.406 3.199 0.287 -9.833 17.364	Width # Cells # Stations Instrumer Overall		o o o 0.25%
% difference Q Water Temperature Mean Water Tempe Mean Weighted Ga	erature		0.245 17.900 17.703 0.000			

Discharge Measurement Summary Date Measured: Thursday, October 26, 2023

Recorded file is located under My Documents SonTek Data YYYY MM_DD\StationaryDataFiles

Recorded file is located under My Documents SonTek Data YYYY_MM_DD				tionaryDat	ariles		
Site Information	1		Measurement I	t Information			
Site Name Station Number Location	tion Number		Party Boat/Motor Meas. Number			JN/GR Boat 130	
System Informa	tion	System Setup			Units		
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality Temperature (C)	353. 0.1 27.2 Mid-Sec 18.0	3 ction	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC	
Discharge Calculation Settings				Dischar	ge Uncertainty		
Track Reference Depth Reference Discharge Result Total Area Mean Velocity Total Width Total Q Maximum Measured Maximum Measured Mean Flow Angle Rated Discharge % difference Q Water Temperature	I Depth(r I Velocity	(m/s)	75.071 0.370 30.800 27.799 3.094 0.490 -0.907 27.232 2.082 18.000	Category Depth Velocity Width # Cells # Station: Instrumer Overall		 0.10% 0.25%	
Mean Water Tempe Mean Weighted Gau		nt	16.969 5.178				

Discharge Measurement Summary Date Measured: Wednesday, November 29, 2023

Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Site Information	1		Measurement I	informatio	on	
Site Name Station Number				Party Boat/Motor		
Location Cableway		Meas. Number			131	
System Informa	tion	System Setup			Units	
System Type	RS-M9	Tagline Azimuth (deg)	351.	2	Distance	m
Serial Number	2457	Salinity (ppt)	0.1		Velocity	m/s
Firmware Version	4.10	Rated Discharge (m3/s)	7.9		Area	m2
		Discharge Method	Mid-Sec	tion	Discharge	m3/s
		Measurement Quality			Temperature	degC
Discharge Calcu	lation S	ettings		Dischar	ge Uncertainty	
Track Reference		Bottom-Track		Category	ISO	Stats
Depth Reference		Vertical Beam		Depth	0.10%	0.47%
Discharge Resu	ts			Velocity	0.14%	
Total Area			69.163	Width	0.10%	0.10%
Mean Velocity			0.120	# Cells	0.10%	
Total Width			30.700	# Station		
Total Q			8.326	Instrumer		0.25%
Maximum Measured	d Depth(r	m)	2.879	Overall	1.55%	0.54%
Maximum Measured	d Velocity	/(m/s)	0.189			
Mean Flow Angle			0.508			
Rated Discharge			7.950			
% difference Q			4.730			
Water Temperature		ndent)	23.300			
Mean Water Tempe			22.565			
Mean Weighted Ga	uge Heig	ht	0.000			

Discharge Measurement Summary Date Measured: Wednesday, December 20, 2023

Recorded file is located under My Documents SonTek Data VYYY MM DDI StationaryDataFiles

Recorded file is located under My Documents SonTek Dat							
Site Information	l.		Measurement I	nformatio	n		
Site Name Station Number Location	Station Number 410127		Party Boat/Motor Meas. Number			SM / JN Boat 132	
System Informat	tion	System Setup			Units		
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	351. 0.1 38.1 Mid-Sec	9	Distance Velocity Area Discharge Temperatur	e	m m/s m2 m3/s degC
Discharge Calcul	ation Se	ettings		Dischar	ge Uncertai	inty	
Track Reference		Bottom-Track		Category		ISO	Stats
Depth Reference		Vertical Beam		Depth			0.25%
Discharge Result	is			Velocity			
Total Area			81.986	Width			0.09%
Mean Velocity			0.573	# Cells			
Total Width			31.200	# Stations			
Total Q			46.995	Instrumer Overall	IC		0.25% 0.37%
Maximum Measured			3.300	Overall			0.37%
Maximum Measured	Velocity	(m/s)	0.763				
Mean Flow Angle			2.809				
Rated Discharge			38.190				
% difference Q	(T.,	- dt)	23.056				
Water Temperature		ident)	23.400 22.816				
Mean Water Temper Mean Weighted Gau		t	0.000				

Discharge Measurement Summary Date Measured: Tuesday, January 23, 2024

MAN DD\Stationan/DataEilos

Recorded file is loca	ted unde	r My Documents\SonTek Dat				
Site Information	۱		Measurement Information			
Site NamenarrregStation Number410127Locationcableway		Party Boat/Motor Meas. Number			MB/PN M9 133	
System Informa	tion	System Setup			Units	
System Type Serial Number Firmware Version	RS-M9 763 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	9.3 0.0 35.3 Mid-Sea Goo	6 ction	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calcu	lation Se	ettings		Dischar	ge Uncertainty	
Track Reference Depth Reference		System (default) Vertical Beam		Category Depth Velocity	ISO 0.10% 0.06%	
Discharge Result Total Area Mean Velocity Total Width Total Q Maximum Measured Maximum Measured Mean Flow Angle Rated Discharge % difference Q Water Temperature	l Depth(r l Velocity	(m/s)	74.305 0.492 30.500 36.561 3.059 0.655 -1.392 35.357 3.404 24.900	Width # Cells # Station: Instrumer	0.10% 0.10% s 1.60%	0.10% 0.25%
Mean Water Tempe Mean Weighted Gau	rature		25.905 0.000			

Discharge Measurement Summary Date Measured: Wednesday, February 21, 2024

Recorded file is located under My Documents|SonTek Data|YYYY MM DD|StationaryDataFiles

Site Information	1	,					
Site Name Narrandera Offtake Station Number 410127 Location Cableway		Party Boat/Motor Meas. Number			JN Boat 134		
System Informa	tion	System Setup	Picus: Humber		Units	134	
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	351. 0.1 32.4 Mid-Sec 	4	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC	
Discharge Calcu	lation S	ettings		Dischar	ge Uncertainty		
Track Reference Depth Reference		Bottom-Track Vertical Beam		Category Depth	ISO 0.10%	Stats 0.31%	
Discharge Resul	ts			Velocity Width	0.06% 0.10%	 0.10%	
Total Area Mean Velocity Total Width Total Q Maximum Measured Maximum Measured			74.496 0.472 31.200 35.155 3.062 0.608	# Cells # Station Instrumen Overall	0.10% s 1.48%	0.10% 0.25% 0.41%	
Mean Flow Angle Rated Discharge % difference Q Water Temperature Mean Water Tempe	e (Indepe		2.395 32.440 8.368 24.900 24.082				
Mean Weighted Ga		ht	0.000				

Discharge Measurement Summary Date Measured: Wednesday, March 20, 2024

Recorded file is loca	er My Documents SonTek Da	ta YYYY_MM_DD St	ationaryDa	ataFiles		
Site Information	۱		Measurement Information			
Site Name Station Number Location		Narranderra Party 410127 Boat/Motor Cableway Meas. Number				JN/SM Boat 135
System Informa	tion	System Setup	I		Units	
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	351. 0.1 14.2 Mid-See 	1	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calcu	Discharge Calculation Settings			Dischar	ge Uncertainty	5
Track Reference Depth Reference		Bottom-Track Vertical Beam		Category Depth	ISO 	Stats 0.34%
Discharge Resu	ts			Velocity Width		 0.10%
Total Area Mean Velocity Total Width			75.228 0.212 30.500	# Cells # Stations	 S	0.10% 0.25%
Total Q Maximum Measure		·	15.916 3.086	Overall		0.23%
Maximum Measure Mean Flow Angle Rated Discharge	d Velocity	/(m/s)	0.270 2.516 14.212			
% difference Q Water Temperature		ndent)	11.992 23.000			
Mean Water Tempe Mean Weighted Ga		ht	23.114 5.204			

Discharge Measurement Summary

Date Measured: Wednesday, April 24, 2024

Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Site Information	n		Measurement Information			
Site Name	•	Narrandera Offtake	Party			JN SM
Station Number		410127	Boat/Motor			Boat
Location		Cableway	Meas. Number			136
		,				150
System Informa	tion	System Setup			Units	
System Type	RS-M9	Tagline Azimuth (deg)	351.	2	Distance	m
Serial Number	2457	Salinity (ppt)	0.1		Velocity	m/s
Firmware Version	4.10	Rated Discharge (m3/s)	11.8	-	Area	m2
		Discharge Method	Mid-See	tion	Discharge	m3/s
		Measurement Quality			Temperature	degC
Discharge Calcu	lation Se	ettings		Dischar	ge Uncertainty	/
Track Reference		Bottom-Track		Category	IS	D Stats
Depth Reference		Vertical Beam		Depth		0.66%
Discharge Resu	ts			Velocity		
Total Area			71.160	Width		0.10%
Mean Velocity			0.174	# Cells		
Total Width			30.800	# Stations	-	
Total Q			12.363		nt	0.2070
Maximum Measured	d Depth(n	n)	2.960	Overall		0.71%
Maximum Measured	d Velocity	(m/s)	0.229			
Mean Flow Angle			1.112			
Rated Discharge			11.851			
% difference Q			4.319			
Water Temperature	e (Indepe	ndent)	16.400			
Mean Water Tempe	erature		16.884			
Mean Weighted Ga	uge Heigh	nt	5.055			

Discharge Measurement Summary

Date Measured: Wednesday, May 29, 2024

Recorded file is loca	ated unde	er My Documents SonTek Da	ta YYYY_MM_DD Si	ationaryDa	ataFiles	
Site Information	n		Measurement Information			
Site Name		Narrandera	Party			BC/SM
Station Number		410127	Boat/Motor			Boat
Location		Cableway	Meas. Number			137
System Informa	ntion	System Setup			Units	
System Type	RS-M9	Tagline Azimuth (deg)	351.	2	Distance	m
Serial Number	2457	Salinity (ppt)	0.1		Velocity	m/s
Firmware Version	4.10	Rated Discharge (m3/s)	2.4	7	Area	m2
		Discharge Method	Mid-See	ction	Discharge	m3/s
		Measurement Quality			Temperature	degC
Discharge Calcu	lation S	ettings		Dischar	ge Uncertainty	
Track Reference		Bottom-Track		Category	ISO	Stats
Depth Reference		Vertical Beam		Depth	0.10%	0.49%
Discharge Resu	lts			Velocity 0.21%		
Total Area			76.055	Width	0.10%	
Mean Velocity			0.042	# Cells	0.10%	
Total Width			30.400	# Station		
Total Q			3.229	Instrumer		
Maximum Measure	d Depth(I	m)	3.125	Overall	1.69%	0.56%
Maximum Measure	d Velocity	/(m/s)	0.095			
Mean Flow Angle			1.991			
Rated Discharge			2.470			
% difference Q			30.728			
Water Temperature	e (Indepe	ndent)	12.700			
Mean Water Tempe			12.582			
Mean Weighted Ga	uge Heig	ht	5.239			

Discharge Measurement Summary

Date Measured: Wednesday, May 29, 2024

Recorded file is located und	ler Mv Documents\SonTek	Data YYYY MM	DD StationarvDataFiles

Recorded file is located under My Documents SonTek Data YYYY_MM_DD S				ationaryDa	lariles		
Site Information	1		Measurement Information				
Site Name		Narrandera	Party			SM/BS	
Station Number		4100127	Boat/Motor			Boat	
Location		Cablway	Meas. Number			138	
System Informa	tion	System Setup			Units		
System Type	RS-M9	Tagline Azimuth (deg)	351.	2	Distance	m	
Serial Number	2457	Salinity (ppt)	0.1		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	2.40)	Area	m2	
		Discharge Method	Mid-Sec	tion	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
Discharge Calcu	lation S	ettings		Dischar	ge Uncertainty		
Track Reference		Bottom-Track		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth	0.10%	0.46%	
Discharge Resu	ts			Velocity	0.18%		
Total Area			75.196	Width	0.10%		
Mean Velocity			0.041	# Cells	0.10%		
Total Width			28.250	# Station			
Total Q			3.115	Instrumer			
Maximum Measure	d Depth(I	m)	3.145	Overall	1.64%	0.53%	
Maximum Measure	d Velocity	/(m/s)	0.090				
Mean Flow Angle			1.047				
Rated Discharge			2.400				
% difference Q			29.803				
Water Temperature	e (Indepe	ndent)	12.700				
Mean Water Tempe			13.271				
Mean Weighted Ga	uge Heig	ht	5.241				

Discharge Measurement Summary Date Measured: Wednesday, June 26, 2024

Decumental ConTak Data VVVV MM DDI Stationan/DataFiles

Recorded file is local	ted under	r My Documents SonTek Dat		-			
Site Information	1		Measurement Information				
Site NameNarrandera OfftakeStation Number410127LocationCableway		Party Boat/Motor Meas. Number			JN Boat 139		
System Informat	tion	System Setup			Units		
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	0.1 5.3	351.2 0.1 5.35 Mid-Section		m m/s m2 m3/s degC	
Discharge Calculation Settings				Dischar	ge Uncertainty		
Track Reference Depth Reference		Bottom-Track Vertical Beam		Category Depth	ISO 0.10%	Stats 1.12%	
Discharge Result	s			Velocity 0.12% Width 0.10%		0.10%	
Total Area Mean Velocity Total Width Total Q Maximum Measured	Depth(m	1)	79.156 0.074 31.000 5.868 3.192	# Cells # Stations Instrumer	0.10% 5 1.52%	0.10% 0.25% 1.15%	
Maximum Measured Velocity(m/s) Mean Flow Angle			0.101 1.253 5.347				
Rated Discharge % difference Q Water Temperature Mean Water Temper		ident)	9.753 8.500 9.502				
Mean Weighted Gau		t	5.317				

8.2 410129 STURT CANAL @ OFFTAKE

Table 4 Measurement Summary at Sturt during the 2023/24 financial year

Meas No.	Date	Time	AFFRA Sensor Q, (MI/day)	Calibration Measurements Q, Measured Discharge (MI/day)	Deviation (%)
144	23/08/2023	10:04	582.422	527.040	-9.51%
145	24/08/2023	16:29	428.112	393.638	-8.05%
146	15/09/2023	10:47	452.650	411.610	-9.07%
147	15/09/2023	12:07	504.058	465.005	-7.75%
148	21/09/2023	10:07	887.846	824.256	-7.16%
149	26/09/2023	12:39	2288.650	2104.618	-8.04%
150	31/10/2023	9:14	963.792	956.448	-0.76%
151	28/11/2023	8:27	775.354	719.971	-7.14%
152	28/11/2023	9:21	759.283	719.021	-5.30%
153	19/12/2023	10:16	1688.083	1649.376	-2.29%
154	23/01/2024	8:12	821.750	783.648	-4.64%
155	20/02/2024	10:36	1343.866	1247.962	-7.14%
157	19/03/2024	8:10	530.669	573.091	7.99%
158	19/03/2024	8:57	521.424	497.664	-4.56%
159	23/04/2024	7:52	226.541	233.280	2.97%

* Measurement was performed on windy days.

Discharge Measurement Summary

Date Measured: Wednesday, August 23, 2023 Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Site Informatio	n		Measurement Information				
Site Name		Sturt Main	Party			PN	
Station Number		410129	Boat/Motor			M9	
Location		cableway	Meas. Number			144	
System Informa	ation	System Setup			Units		
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m	
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	6.10) (Area	m2	
		Discharge Method	Mid-Sec	tion	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
		Temperature (C)	11.0)			
Discharge Calcu	lation Se	ettings		Dischar			
Track Reference		System (default)		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth	0.10%	0.56%	
Discharge Resu	lts			Velocity 0.10%		1.24%	
Total Area			64.386	Width	0.10%	0.10%	
Mean Velocity			0.105	# Cells	0.10%		
Total Width			31.000	# Stations	5 1.52%		
Total Q			6.741	Instrumen		0.25%	
Maximum Measure	d Depth(n	n)	3.045	Overall	1.55%	1.39%	
Maximum Measure			0.139				
Mean Flow Angle			-3.212				
Rated Discharge			6.100				
% difference Q			10.506				
Water Temperature	e (Indepe	ndent)	11.900				
Mean Water Tempe	erature		11.530				
Mean Weighted Ga	uge Heigh	ıt	0.000				

Discharge Measurement Summary Date Measured: Thursday, August 24, 2023 Recorded file is located under My Documents|SonTek Data|YYY_MM_DD|StationaryDataFiles Site Information **Measurement Information** Site Name STURT Party MB/PN Station Number 410129 Boat/Motor M9 CABLEWAY Meas. Number 145 Location

System Information		System Setup			Units	
System Type	RS-M9	Tagline Azimuth (deg)	329.	-	Distance	m
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s
Firmware Version	4.10	Rated Discharge (m3/s)	4.50	5	Area	m2
		Discharge Method	Mid-Sec	tion	Discharge	m3/s
		Measurement Quality			Temperature	degC
		Temperature (C)	12.0)		
Discharge Calcu	lation S	ettings		Dischar	ge Uncertainty	
Track Reference		System (default)		Category	ISO	Stats
Depth Reference		Vertical Beam		Depth	0.11%	0.47%
Discharge Resu	lts			Velocity	0.09%	0.96%
Total Area			65.834	Width	0.11%	0.11%
Mean Velocity			0.075	# Cells	0.11%	
Total Width			31.000	# Stations		
Total Q			4.955	Instrumer		0.25%
Maximum Measure	d Depth(I	m)	3.101	Overall	1.68%	1.10%
Maximum Measure	d Velocity	/(m/s)	0.138			
Mean Flow Angle			1.846			
Rated Discharge			4.556			
% difference Q			8.752			
Water Temperature	e (Indepe	ndent)	12.500			
Mean Water Tempe	erature		13.891			
Mean Weighted Ga	uge Heig	ht	0.000			

Discharge Measurement Summary

Date Measured: Friday, September 15, 2023

Site Information			Measurement Information				
Site Name Station Number Location		Sturt 1 US	Party Boat/Motor Meas. Number		PB Hydro/ 14		
System Informatio	n	System Setup			Units		
System Type Serial Number Firmware Version Software Version	RS-M9 6604 4.10 4.2	Transducer Depth (m) Screening Distance (m) Salinity (ppt) Magnetic Declination (deg)	0.10 0.27 0.1 11.0		Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC	
Discharge Calculat	ion Settings			Disch	arge Results		
Track Reference GPS-GGA Depth Reference Vertical Beam Coordinate System ENU		Left Method Right Method Top Fit Type Bottom Fit Type Start Gauge Height (m) End Gauge Height (m)	Sloped Bank Sloped Bank Power Fit Power Fit 0.00 0.00	Width (m) Area (m2) Mean Speed (m/s) Total Q (m3/s) Maximum Measured Depth		28.103 64.206 0.082 5.237 3.098	
				Maximu Speed	m Measured	0.180	

Discharge Measurement Summary

Date Measured: Thursday, September 21, 2023

Site Information		Measurement 1	Measurement Information			
Site Name Station Number Location		Sturt 1 US	Party Boat/Motor Meas. Number	PB, C Hydro/ 14		M9
System Informatio	n	System Setup		Un	its	
System Type Serial Number Firmware Version Software Version	RS-M9 6604 4.10 4.2	Transducer Depth (m) Screening Distance (m) Salinity (ppt) Magnetic Declination (deg)	0.10 0.27 0.1 11.2	Velo Area Disc	ance ocity a :harge nperature	m m/s m2 m3/s degC
Discharge Calculati	ion Settings			Discharge	Results	
Track Reference Depth Reference Coordinate System	GPS-GGA Bottom-Track ENU	Left Method Right Method Top Fit Type Bottom Fit Type Start Gauge Height (m)	Sloped Bank Sloped Bank Power Fit Power Fit 0.00	Total Q (m3	m2) Speed (m/s)	
		End Gauge Height (m)	0.00	Depth Maximum Me Speed	easured	3.238 0.784

Discharge Measurement Summary Date Measured: Tuesday, September 26, 2023 Recorded file is located under My Documents/SonTek Data/YYYY_MM_DD/StationaryDataFiles

Recorded file is loca	itea unae	er my Documents\SonTek Da	ata\YYYY_MM_DD\StationaryDataFiles				
Site Information	1		Measurement Information				
Site Name Station Number		Sturt 410129	Party Boat/Motor			PN GR M9	
Location		cableway	Meas. Number			149	
System Informa	tion	System Setup			Units		
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m	
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	24.3	6	Area	m2	
		Discharge Method	Mid-Sec	ction	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
		Temperature (C)	17.0	0			
Discharge Calcu	lation S	ettings		Dischar			
Track Reference		System (default)		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth	0.10%		
Discharge Resul	ts			Velocity 0.079		0.73%	
Total Area			64.734	Width	0.10%	0.10%	
Mean Velocity			0.409	# Cells	0.10%		
Total Width			31.000	# Station			
Total Q			26.489	Instrumer			
Maximum Measured	d Depth(I	m)	3.002	Overall	1.55%	0.86%	
Maximum Measured	d Velocity	/(m/s)	0.585				
Mean Flow Angle			-3.752				
Rated Discharge			24.359				
% difference Q			8.742				
Water Temperature		ndent)	17.700				
Mean Water Tempe			18.906				
Mean Weighted Ga	uge Heig	nt	0.000				

Discharge Measurement Summary Date Measured: Tuesday, October 24, 2023

ted under My Documents SonTek Data YYYY MM_DDI StationaryDataFiles

Recorded file is loca	nted unde	r My Documents SonTek Dat	ta\YYYY_MM_DD\StationaryDataFiles				
Site Information	1 I		Measurement Information				
Site Name Station Number Location	Sturt Main Canal @ Offtake 410129 Cableway		Party Boat/Motor Meas. Number			JN/GR Boat 150	
System Informa	tion	System Setup			Units		
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality Temperature (C)	333. 0.1 11.0 Mid-Sec Excelle 18.0	7 ction ent	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC	
Discharge Calcu	lation Se	ettings		Dischar			
Track Reference Depth Reference		Bottom-Track Vertical Beam		Category Depth	ISO 0.11%		
Discharge Resul	ts			Velocity 0.099			
Total Area Mean Velocity Total Width Total Q Maximum Measured Depth(m)			61.621 0.181 28.100 11.155 3.003	Width # Cells # Station: Instrumer Overall		o o o 0.25%	
Maximum Measured Velocity(m/s) Mean Flow Angle Rated Discharge % difference Q Water Temperature (Independent)			0.259 -4.865 11.070 0.769 18.100				
	Mean Water Temperature Mean Weighted Gauge Height						

Discharge Measurement Summary Date Measured: Tuesday, November 28, 2023

Recorded file is located under My Documents SonTek Data YYYY MM_DD\StationaryDataFiles

Recorded file is located under My Documents\SonTek Data							
Site Information			Measurement Information				
Site NameSturt @ OfftakeStation Number410129LocationCableway		Party Boat/Motor Meas. Number				JN/GR eBoat 151	
System Informat	ion	System Setup			Units		
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	333. 0.1 8.33 Mid-Seo	3	Distance Velocity Area Discharge Temperatur	e	m m/s m2 m3/s degC
Discharge Calcula	ation Se	ettings		Dischar	ge Uncertai	inty	
Track Reference		Bottom-Track		Category		ISO	Stats
Depth Reference		Vertical Beam		Depth			0.37%
Discharge Result	s			velocity			
Total Area			63.801	Width			0.10%
Mean Velocity			0.141	# Cells	_		
Total Width			27.800	# Stations Instrumen	-		0.25%
Total Q			8.974	Overall	IL		0.25%
Maximum Measured		-	3.082	Overall			0.4070
Maximum Measured	Velocity	(m/s)	0.183				
Mean Flow Angle			-2.308				
Rated Discharge			8.333				
% difference Q	(Indono)	adont)	7.687 23.000				
Mean Water Temperature	Water Temperature (Independent)						
Mean Weighted Gau		nt	23.260 0.000				

Discharge Measurement Summary Date Measured: Tuesday, November 28, 2023

Date Heasured. Housday, Hovember 20, 202

Recorded file is loca	Recorded file is located under My Documents SonTek Data YYYY_MM_DD StationaryDataFiles							
Site Information	1 I		Measurement Information					
Site Name	9	Sturt Offtake Gauging 2	Party			JN/GR		
Station Number	Station Number 410129					eBoat		
Location		Cableway	Meas. Number			152		
System Informa	tion	System Setup			Units			
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m		
Serial Number	2457	Salinity (ppt)	0.1		Velocity	m/s		
Firmware Version	4.10	Rated Discharge (m3/s)	8.3	2	Area	m2		
		Discharge Method	Mid-Sec	ction	Discharge	m3/s		
		Measurement Quality			Temperature	degC		
Discharge Calcu	lation S	ettings		Dischar	ge Uncertainty			
Track Reference		Bottom-Track		Category	ISO	Stats		
Depth Reference		Vertical Beam		Depth	0.10%	0.43%		
Discharge Resu	ts			Velocity 0.11%				
Total Area			64.147	Width	0.10%	0.10%		
Mean Velocity			0.137	# Cells	0.10%			
Total Width			28.000	# Station	s 1.48%			
Total Q			8.788	Instrumer		0.25%		
Maximum Measure	d Depth(r	m)	3.086	Overall	1.51%	0.50%		
Maximum Measure	d Velocity	/(m/s)	0.198					
Mean Flow Angle			-2.981					
Rated Discharge			8.322					
% difference Q			5.601					
Water Temperature	e (Indepe	ndent)	23.000					
Mean Water Tempe	erature		23.395					
Mean Weighted Ga	uge Heig	ht	0.000					

Discharge Measurement Summary Date Measured: Tuesday, December 19, 2023

Recorded file is located under My Documents SonTek Data YYYY MM_DD\StationaryDataFiles

Recorded file is loca	itea unae	r My Documents SonTek Data	ta YYYY_MM_DD StationaryDataFiles				
Site Information	n		Measurement Information				
Site Name Station Number Location	Station Number 410127		Party Boat/Motor Meas. Number			JN SM Boat 153	
System Informa	tion	System Setup			Units		
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	333. 0.1 19.0 Mid-Sec	9	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC	
Discharge Calcu	lation Se	ettings		Dischar	ge Uncertainty		
Track Reference		Bottom-Track		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth		0.32%	
Discharge Resul	ts			Velocity			
Total Area			65.948	Width		0.10%	
Mean Velocity			0.296	# Cells			
Total Width			28.300	# Stations			
Total Q			19.538	Instrumer Overall	it	0.25% 0.42%	
Maximum Measured			3.153	Overall		0.42%	
Maximum Measured	I Velocity	(m/s)	0.420				
Mean Flow Angle			-3.986				
Rated Discharge			19.090				
% difference Q	Indone	ndont)	2.347				
Water Temperature Mean Water Tempe		nuency	25.500 25.798				
Mean Weighted Ga		nt	0.000				

Discharge Measurement Summary Date Measured: Tuesday, January 23, 2024

Lacov MM DDI Ctationan/DataEiloo

Recorded file is located u	nder My Documents SonTek Da	ta YYYY_MM_DD Sta	ntionaryDat	aFiles	
Site Information		Measurement Information			
Site NameSturt OfftakeStation Number410129LocationCableway		Party Boat/Motor Meas. Number			JN/SM Boat 154
System Information	System Setup			Units	
System Type RS-1 Serial Number 245 Firmware Version 4.1	57 Salinity (ppt)	333. 0.1 9.0 Mid-Sea 	7	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calculation	n Settings		Dischar	ge Uncertainty	
Track Reference	Bottom-Track		Category	ISO	Stats
Depth Reference	Vertical Beam		Depth		0.36%
Discharge Results			Velocity		
Total Area		66.010	Width		0.10%
Mean Velocity		0.144	# Cells		
Total Width		28.300	# Stations		0.25%
Total Q		9.511	Overall	n	0.25%
Maximum Measured Dep		3.137	Overall		0.45%
Maximum Measured Velo	city(m/s)	0.211			
Mean Flow Angle		-1.205			
Rated Discharge		9.070			
% difference Q		4.862			
Water Temperature (Ind		23.200 23.447			
Mean Water Temperature Mean Weighted Gauge H		0.000			

Discharge Measurement Summary Date Measured: Tuesday, February 20, 2024

Recorded file is located under My Documents SonTek Data YYYY MM_DD\StationaryDataFiles

Recorded file is located under My Documents SonTek Data			a YYYY_MM_DD StationaryDataFiles				
Site Information			Measurement Information				
Site NameSturt OfftakeStation Number410129LocationCableway		Party Boat/Motor Meas. Number			JN Boat 155		
System Informa	tion	System Setup			Units		
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	333. 0.1 14.4 Mid-Sec	4	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC	
Discharge Calcu	lation Se	ettings		Dischar	ge Uncertainty		
Track Reference Depth Reference		Bottom-Track Vertical Beam		Category Depth	ISO 0.10%	Stats 0.49%	
Discharge Resul	ts			Velocity 0.09% Width 0.10%		0.10%	
Total Area Mean Velocity Total Width Total Q Maximum Measured Depth(m)			65.896 0.236 28.500 15.554 3.152	# Cells # Stations	0.10% 5 1.40%	0.10% 0.25% 0.56%	
Maximum Measured Velocity(m/s) Mean Flow Angle Rated Discharge			0.336 -6.987 14.444				
% difference Q Water Temperature (Independent) Mean Water Temperature Mean Weighted Gauge Height			7.683 25.400 24.992 0.000				

Discharge Measurement Summary Date Measured: Tuesday, March 19, 2024

Recorded file is loca	ated unde	er My Documents SonTek Dat	a YYYY_MM_DD Sta	tionaryDat	aFiles	
Site Information			Measurement Information			
Site Name Sturt Offtake			Party			JN/SM
Station Number 410129		Boat/Motor			Boat	
Location		Cableway	Meas. Number			157
System Information		System Setup	Units		Units	
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m
Serial Number	2457	Salinity (ppt)	0.1		Velocity	m/s
Firmware Version	4.10	Rated Discharge (m3/s)	5.76		Area	m2
		Discharge Method	Mid-Sec	tion	Discharge	m3/s
		Measurement Quality			Temperature	degC
Discharge Calcu	lation Se	ettings		Dischar	ge Uncertainty	
Track Reference		Bottom-Track		Category	ISO	Stats
Depth Reference		Vertical Beam		Depth		0.50%
Discharge Resu	lts			Velocity		
Total Area			61.208	Width		0.10%
Mean Velocity		0.100	# Cells			
Total Width		28.500				
Total Q			6.142	Instrument		0.25%
Maximum Measured Depth(m)			2.976	Overall		0.57%
Maximum Measured Velocity(m/s)			0.145			
Mean Flow Angle			-5.511			
Rated Discharge			5.760			
% difference Q			6.633			
Water Temperature (Independent)			22.500			
Mean Water Temperature			22.834			
Mean Weighted Ga	uge Heigh	nt	2.715			

Discharge Measurement Summary

Date Measured: Tuesday, March 19, 2024

Decorded file is located under N	y Documents SonTek Data YYYY_MM_DD StationaryDataFiles	
Recorded file is located under m	y Documents Sonnex Data (TTTT_PIPI_DD) Stational y Datamies	

Site Information			Measurement Information			
Site Name Station Number		Sturt Offtake 410129	Party Boat/Motor			JN/SM Boat
Location		Cableway	Meas. Number			158
System Informa	tion	System Setup			Units	
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m
Serial Number	2457	Salinity (ppt)	0.1		Velocity	m/s
Firmware Version	4.10	Rated Discharge (m3/s)	5.76		Area	m2
		Discharge Method	Mid-Sec	tion	Discharge	m3/s
		Measurement Quality			Temperature	degC
Discharge Calcu	lation Se	ettings		Dischar	ge Uncertainty	
Track Reference		Bottom-Track		Category	ISO	Stats
Depth Reference		Vertical Beam		Depth		0.50%
Discharge Resul	ts			Velocity		
Total Area			59.898	Width		0.10%
Mean Velocity			0.101	# Cells		
Total Width			28.500	# Stations	-	
Total Q		6.035	Instrument		0.25%	
Maximum Measured Depth(m)			2.901	Overall		0.57%
Maximum Measured Velocity(m/s)			0.150			
Mean Flow Angle			-4.459			
Rated Discharge			5.760			
% difference Q			4.774			
Water Temperature (Independent)			22.800			
Mean Water Temperature			22.996			
Mean Weighted Gauge Height			0.000			

Discharge Measurement Summary

Date Measured: Tuesday, April 23, 2024

Recorded file is loca	ted under	My Documents SonTek Date	a YYYY_MM_DD Sta	tionaryDat	aFiles		
Site Information			Measurement I	Measurement Information			
Site Name Sturt Offtake		Party			JN SM		
Station Number		410129	Boat/Motor			Boat	
Location Cableway		Meas. Number			159		
System Information		System Setup	Units		Units		
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m	
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	2.70	D	Area	m2	
		Discharge Method	Mid-Sec	tion	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
Discharge Calcu	lation Se	ttings		Dischar	ge Uncertainty		
Track Reference		Bottom-Track		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth		0.24%	
Discharge Resul	ts			Velocity			
Total Area			33.296	Width		0.09%	
Mean Velocity			0.079	# Cells			
Total Width		24.150					
Total Q			2.622	Instrument		0.25%	
Maximum Measured Depth(m)			1.892	Overall		0.36%	
Maximum Measured Velocity(m/s)			0.110				
Mean Flow Angle			-3.123				
Rated Discharge			2.700				
% difference Q			-2.880				
Water Temperature (Independent)			15.500				
Mean Water Temperature			16.295				
Mean Weighted Gau	Mean Weighted Gauge Height						

END OF REPORT