2023 Annual Compliance Report

This document is the property of Murrumbidgee Irrigation Limited. The data contained in this Annual Compliance Report is for the sole purpose of meeting MI's licence compliance reporting requirements. MI does not guarantee the accuracy, reliability or suitability of excerpts of this data for any other purpose.

© Murrumbidgee Irrigation Limited (October 2023)

This report is copyright. Apart from use under the *Copyright Act 1968* (Cth), no part of this work may be reproduced by any process without prior written permission from Murrumbidgee Irrigation Limited.

Murrumbidgee Irrigation Limited, 86 Research Station Road, Hanwood NSW 2680

T (02) 6962 0200 I E info@mirrigation.com.au I www.mirrigation.com.au

Contents

Pr	Preface1				
СС	COMBINED WATER SUPPLY WORK APPROVAL AND WATER USE APPROVAL				
1	1 Statement of compliance				
2	Plan of c	operations and works	. 2		
3	Reportir	ng on water management	. 5		
	3.1	Climate conditions			
	3.2	Calibration report for Main Canal and Sturt Canal AFFRA units			
	3.3	Diversions and water allocation	. 6		
	3.4	Environmental diversions	. 7		
	3.5	Water discharged from area of operations	. 8		
	3.6	Water balance	. 9		
4	Water u	se	LO		
	4.1	Crop statistics			
	4.2	Irrigation intensity			
5	Salinity	and salt load	13		
	5.1	Extracted salt load	13		
	5.2	Discharged salt load	14		
	5.3	Salt load summary	16		
6	Ground	vater conditions	L7		
	6.1	Groundwater monitoring and reporting	17		
	6.2	Groundwater salinity			
	6.3	Shallow Shepparton Formation			
	6.4	Deep Shepparton Formation			
	6.5	Calivil Formation			
7		lls			
-					
8	New me	asures to limit groundwater recharge and discharge of salt	39		
9	Environ	nental protection and management	39		
	9.1	Discharge of noxious aquatic weeds			
	9.2	Discharge of blue-green algae	39		
ΕN	IVIRONM	ENTAL PROTECTION LICENCE 4651	10		
10	Stateme	nt of compliance	10		
11	EPL mor	itoring and reporting	11		
	11.1	System performance	41		
	11.2	Water quality monitoring			
	11.3	Summary of events			
12	-	d changes			
At	tachmen	t A: Significant events for 2022/23	16		
At	tachmen	t B: VENTIA flow, EC, and salt load monitoring financial year report	17		

List of figures

Figure 1 Murrumbidgee Irrigation's Area of Operations	3
Figure 2 Location of authorised supply works and licence discharge points	4
Figure 3 Comparison of total water deliveries to major crop types	. 11
Figure 4 Distribution of irrigation intensity across the MIA	. 12
Figure 5 Location of piezometers and tubewells in the MIA 2022/23	. 18

Figure 6 Rainfall and evapotranspiration data FYE 2006-2023 - Griffith weather station	20
Figure 7 Shallow Shepparton Formation – depth to water table 2022	22
Figure 8 Shallow Shepparton Formation – depth to water table 2021	23
Figure 9 Shallow Shepparton Formation – depth to water table September 2020	24
Figure 10 Shallow Shepparton Formation - depth to water table, September 2019	25
Figure 11 Shallow Shepparton Formation - depth to water table, September 2010	26
Figure 12 Deep Shepparton Formation - depth to water table, 2022	28
Figure 13 Deep Shepparton Formation - depth to water table, 2021	29
Figure 14 Deep Shepparton Formation - depth to water table, September 2020	30
Figure 15 Deep Shepparton Formation - depth to water table, September 2019	31
Figure 16 Deep Shepparton Formation – depth to water table, September 2010	32
Figure 17 Calivil Formation – depth to water table, 2022	34
Figure 18 Calivil Formation – depth to water table, 2021	35
Figure 19 Calivil Formation - depth to water table, September 2020	36
Figure 20 Calivil Formation - depth to water table, September 2019	37
Figure 21 Calivil Formation - depth to water table, September 2010	38
Figure 22 Comparison of irrigation drainage water notification trends	44

List of tables

Table 1 Combined Approval (40CA403245) reporting summary	1
Table 2 Significant event notifications (S91i events)	
Table 3 Local weather station rainfall and ETo	5
Table 4 Main Canal at NARREG (410127) calibration report	6
Table 5 Sturt Canal at STURT (410129) calibration report	
Table 6 Monthly summaries of water diversions delivered to customers, 2022/23	6
Table 7 Water allocation, total diversions, and deliveries 2022/23 compared to previous years	7
Table 8 Diversions debited to Water Access Licences groups	
Table 9 Environmental water diversions for 2022/23	
Table 10 Monthly discharge volumes (ML) recorded at monitoring points	
Table 11 Total volumes discharged from the MIA	
Table 12 Annual water balance as at 1 July 2023 and prior years	
Table 13 Summary of water deliveries for major crop groupings 2022/23	
Table 14 Total deliveries to major crop types 2022/23 compared to previous years	. 11
Table 15 Total extracted salt load for 2022/23	
Table 16 Extracted salt load (t) for 2022/23 compared to prior years	
Table 17 Monthly summary of flow, EC, and salt loads at monitoring points for 2022/23	. 14
Table 18 Discharged salt load 2022/23 compared to prior years	
Table 19 Salt load summary for 2022/23	
Table 20 Groundwater piezometer status summary 2022	. 17
Table 21 Number and percent of total piezometers readings within each depth range	. 19
Table 22 Change in groundwater depth	
Table 23 EPL 4651 monitoring and reporting requirements	
Table 24 Total water volumes	
Table 25 Monitoring results for Point 4 - LAG	
Table 26 Monitoring results for Point 5 - GMSRR	
Table 27 Monitoring results for Point 6 - YMS	
Table 28 Monitoring results for Point 7 - ROCUDG	. 43
Table 29 Monitoring results for Point 15 – MIRFLD	. 43
Table 30 Summary of events 2022/23	
Table 31 Summary of significant events 2022/23	. 46

Abbreviations

AFFRA	Acoustic Flowmeter For Remote Areas
ANZECC	Australian and New Zealand Environment and Conservation Council
BBS	Barren Box Storage
CSIRO	Commonwealth Scientific Investigation and Research Organisation
DPE	NSW Department of Planning and Environment
EC	Electrical Conductivity
EHG	Environment, Heritage Group
EPA	Environment Protection Authority
EPL	Environment Protection Licence
ЕТо	Evapotranspiration (crop reference)
GIS	Geographic Information System
GMSRR	EPL Point 5 - Gogeldrie Main Southern Drain River Road
ha	Hectare(s)
LAG	EPL Point 4 - Gogeldrie Main Drain at Gooragool Lagoon
LTA	Long-term average
MI	Murrumbidgee Irrigation Limited
MIA	Murrumbidgee Irrigation Area
MIRFLD	EPL Point 15 - Mirrool Creek Floodway Wyvern Station
ML	Megalitre
NARREG	Narrandera Regular
NRAR	Natural Resources Access Regulator
ROCUDG	EPL Point 7 - Point Cudgel Creek Roaches Escape
SOP	Standard Operating Procedure
SWL	Standing Water Level
t	tonnes
μS/cm	micro siemens per centimetre
μg/L	micrograms per litre
WAL	Water Access Licence
YMS	EPL Point 6 - Yanco Main Southern Drain

Preface

The Annual Compliance Report for the financial year 2022/23 has been prepared to meet the reporting requirements of the licences held by Murrumbidgee Irrigation (**MI**).

MI operates under a Combined Water Supply Work Approval and Water Use Approval 40CA403245 (Combined Approval) issued by the NSW Department of Primary Industry – Water and regulated by the Natural Resources Access Regulator (**NRAR**). MI also holds an Environment Protection Licence (**EPL**) 4651 issued by the NSW Environment Protection Authority (**EPA**).

MI is committed to achieving organisational excellence through operating safely, efficiently, and effectively, all of which contribute towards the measure of MI's compliance performance.

COMBINED WATER SUPPLY WORK APPROVAL AND WATER USE APPROVAL

1 Statement of compliance

MI has met the conditions of the Monitoring and Reporting Plan dated 16 March 2018 for our Combined Approval in 2022/23. The compliance requirements are cross referenced within this report and listed in **Table 1**.

MI has quality assurance and control procedures for data integrity and to ensure that all compliance obligations are met. This includes using a NATA accredited laboratory for water sample analysis and contracting an external hydrological service provider to manage and maintain our licensed supply and discharge points.

Approval section	Condition	Report section
Submission of annual compliance report	1	This report
Plans of the area of operations,	2.1	
authorised works, monitoring sites and water management infrastructure	2.2	2. Plan of operations and works
Statement of compliance	2.3	1. Statement of compliance
	2.4	
	2.5	Sections 3 - 7
Presentation of data and	2.6	
analyses	2.7	Provided via email with report
	2.8	1. Statement of Compliance
New measures to limit groundwater recharge and discharge of salt	2.9	8. New measures to limit groundwater recharge and discharge of salt
	2.10	3.3 Diversions and water allocation
Departing on water management	2.11	3.5 Water discharged from area of operation
Reporting on water management	2.12	3.6 Water balance
	2.13 (a) (b)	3.1 Climate conditions
	2.13 (c) – (i)	4. Water use
Reporting on salinity and salt	2.14	
load	2.15	5. Salinity and salt load
	2.16	
Reporting on groundwater conditions	2.17	6. Groundwater conditions

Table 1 Combined Approval (40CA403245) reporting summary

Approval section	Condition	Report section
Discharge of noxious aquatic weeds	5	9.1 Discharge of noxious aquatic weeds
Discharge of blue green algae	6	9.2 Discharge of blue-green algae

Table 2 outlines the number of significant events that occurred in 2022/23 that required notification to the Minister. The significant events are detailed in Attachment A: Significant events for 2022/23

When a significant event occurs MI lodge an S91i - self reporting form and engage a Duly Qualified Person (DQP) to investigate and rectify the issue. A Certification of Validation is completed and an S91 completion form is lodged with the relevant supporting documentation.

Table 2 Significant event notifications (S91i events)

Year	Number of significant events
2022/23	4

MI did not change or modify the condition of the existing authorised water supply works or authorised discharge works listed in the Combined Approval during 2022/23. MI did not construct new works that would allow further discharge from the Area of Operations.

2 Plan of operations and works

MI's area of operations, storages and major supply and drainage channels are presented in **Figure 1**. There were no changes to **Figure 1** from the prior financial year.

The Murrumbidgee Irrigation Area (**MIA**) is supplied by water stored in Burrinjuck and Blowering dams and released to the Murrumbidgee River. Water is diverted from the Murrumbidgee River in accordance with the conditions of the Combined Approval via two authorised supply works (**Figure 2**):

- NARREG Narrandera Regulator (after diversion from Berembed Weir via Bundidgerry Creek and regulator)
- STURT Sturt Regulator (after diversion from Gogeldrie Weir and Coononcoocabil Lagoon)

There are five (5) sites which have the potential to discharge water outside MI's area of operations, which are presented in **Figure 2**. These sites are monitored in accordance with MI's Combined Approval and EPL 4651.

MI's five discharge monitoring points are:

- EPL Point 4 LAG Gogeldrie Main Drain at Gooragool Lagoon
- EPL Point 5 GMSRR Gogeldrie Main Southern Drain River Road
- EPL Point 6 YMS Yanco Main Southern Drain
- EPL Point 7 ROCUDG Cudgel Creek Roaches Escape
- EPL Point 15 MIRFLD Mirrool Creek Floodway Wyvern Station

Figure 1 Murrumbidgee Irrigation's Area of Operations

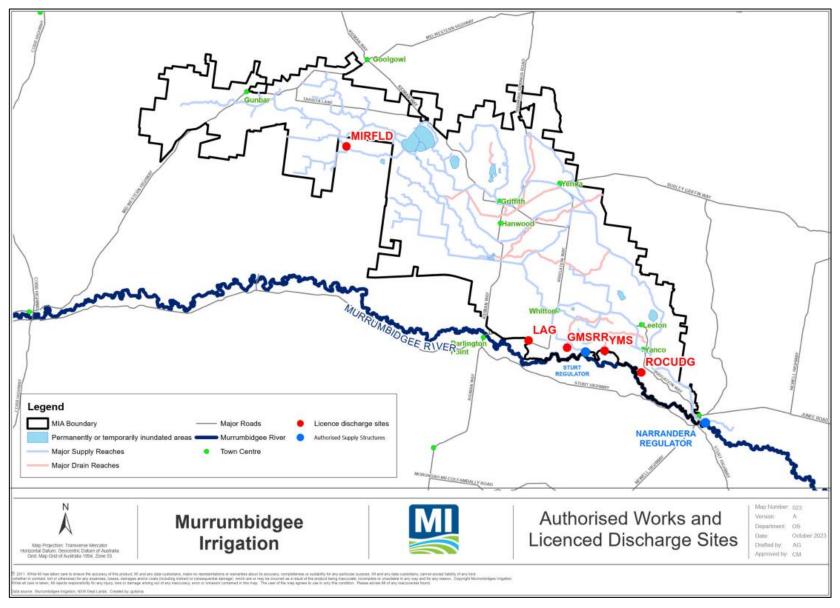


Figure 2 Location of authorised supply works and licence discharge points

3 Reporting on water management

MI's water management information is presented below. There are no internal benchmarks or targets that are relevant to this report.

The reference year 2016/17 was chosen for this year's report due to comparable climatic and water management conditions. In 2022/23 and 2016/17, the MIA experienced flood events which impacted water management within MI's area of operations including diversions, delivery volumes and discharges outside of MI's area of operations.

3.1 Climate conditions

Rainfall and evapotranspiration (ETo) data recorded at the DPI Beelbangera weather station is presented in **Table 3** for 2022/23. Past climate data was obtained from CSIRO Griffith weather station, however from 2022 the public access of this data was disabled. The DPI Beelbangera weather station correlates well with past CSIRO data, so it was chosen for data moving forward.

Above average rainfall was recorded during 2022/23 with a 12mm increase in rainfall compared to 2021/22 which also experienced above average rainfall. The 2022/23 reporting year recorded 108mm more rainfall than in 2016/17 while the ETo was 434mm less than in 2016/17. This is likely due to lower temperatures and a higher number of rain days occurring during 2022/23.

Year	Total rainfall (mm)	Total ETo (mm)	Station			
2022/23	664	1,159	DPI Beelbangera			
2021/22	652	1,158	DPI Beelbangera			
2020/21	441	1,646	CSIRO Griffith			
2019/20	364	1,784	CSIRO Griffith			
Surface water reference year						
2016/17	556	1,593	CSIRO Griffith			
Groundwater reference year						
2010/11	739	1,391	CSIRO Griffith			

Table 3 Local weather station rainfall and ETo

3.2 Calibration report for Main Canal and Sturt Canal AFFRA units

The calibration reports for Narrandera Regulator (NARREG) and Sturt Canal offtake (STURT) AFFRA units have been provided by Ventia Utility Services as part of a contract with MI to ensure flow measurements meet the conditions of MI's Combined Approval 40CA403245.

During the 2021/22 reporting year, MI increased the rated operating range of the Main Canal and Sturt Canal AFFRA units, leading to more reliable instrument readings in 2022/23 which meant that only asset performance gaps where triaged and managed. When a gauging is taken outside of the instrument threshold it is used to update the index equation and subsequent certified volumes at the offtakes.

The calibration report summary for the NARREG AFFRA unit is presented in **Table 4** and the STURT AFFRA unit presented in **Table 5**. The VENTIA flow, EC, and salt load monitoring financial year report is included as **Attachment B**: VENTIA flow, EC, and salt load monitoring financial year report.

Date	Time (24hr)	Calibration measurements: Q measured discharge ML/day	AFFRA sensor: Q recorded mean ML/day	Deviation (%)
14/12/2022	10:36	2310.336	2335.392	-1.074
24/01/2023	16:52	3091.133	3182.976	-2.885
22/02/2023	12:33	3800.909	3663.51	3.755
19/04/2023	10:59	333.418	310.04	7.544*
24/05/2023	11:51	920.246	979.073	-5.989

Table 4 Main Canal at NARREG (410127) calibration report

* Measurement was performed on windy days

Table 5 Sturt Canal at STURT (410129) calibration report

Date	Time (24hr)	Calibration measurements: Q measured discharge ML/day	AFFRA sensor: Q recorded mean ML/day	Deviation (%)
13/12/2022	14:45	857.434	962.496	-10.919
25/01/2023	15:38	1068.077	1007.424	6.019
21/02/2023	12:42	1516.493	1463.616	3.613
18/04/2023	12:03	160.704	170.541	-5.724
23/05/2023	11:22	264.211	290.532	-8.982

3.3 Diversions and water allocation

A monthly summary of gross water diverted from the Murrumbidgee River is presented in **Table 6**. These volumes represent diversions entering the supply system via MI's two authorised water supply works at NARREG and STURT.

The total diversion volume of 613,614 ML includes an environmental water diversion volume of 837 ML diverted on behalf of Department of Planning and Environment – Environment, Heritage Group (DPE-EHG).

Month	STURT	NARREG	Total diversion	Delivered to customers
Jul-22	2,863	6,398	9,261	6,271
Aug-22	481	4,603	5,084	5,163
Sep-22	613	3,517	4,130	4,117
Oct-22	58	3,377	3,435	5,768
Nov-22	4,041	19,001	24,042	25,498
Dec-22	34,965	96,705	131,670	119,993
Jan-23	36,119	115,330	151,449	145,929
Feb-23	32,791	104,011	136,802	126,364
Mar-23	22,391	71,404	93,795	93,584
Apr-23	281	13,347	13,628	13,806
May-23	7,559	24,414	31,973	26,900
Jun-23	2,316	6,029	8,345	13,218
Total	145,478	468,136	613,614	586,611

 Table 6 Monthly summaries of water diversions delivered to customers, 2022/23

Note: All figures in ML. The figures were reviewed by a certified third party and were within the approved +/- 5% and reported to Water NSW.

Water allocations, diversions, total deliveries, and climate data for 2022/23 is compared to previous years in **Table 7**. Announced allocations can determine the irrigation demand for the season, however rainfall and ETo can significantly affect the total diversions and deliveries supplied for the year.

Year	Announced allocation (%) general / high	Diversions (ML)	Deliveries (ML)	Rainfall (mm)	ETo (mm)
2022/23	100/100	613,614	586,611	664	1159
2021/22	100/100	684,959	646,082	652	1,158
2020/21	100/100	880,456	748,988	441	1,646
2019/20	11/95	349,523	285,270	364	1,784
2016/17	100/100	780,083	621,094	556	1,593
Network All Charles to Ad					

Table 7 Water allocation, total diversions, and deliveries 2022/23 compared to previous years

Note: All figures in ML

Above average rainfall was recorded throughout local and upriver catchments in 2022/23, resulting in 100% allocation for both General Security and High Security allocations. A decrease of 71,345 ML diversions and 59,471 ML of deliveries occurred between 2022/23 and 2021/22. The diversions and deliveries supplied in 2016/17 are slightly higher than those supplied in 2022/23 owing to less rainfall in the MIA during 2016/17.

The volume of water diversions debited to each grouping of MI's Water Access Licences are shown in **Table 8**.

Year	WAL 1 High Security	WAL 2 General Security	WAL 3 Towns	WAL 4 Stock & Domestic	WAL 5 Other
2022/23	225,705	196,269	19,699	6,384	165,557
2021/22	244,199	255,941	19,699	6,384	158,736
2020/21	231,450	404,808	19,699	6,384	218,115
2019/20	212,062	50,985	19,699	7,263	59,514

Table 8 Diversions debited to Water Access Licences groups

Note: All figures in ML. WAL 5 Other includes Supplementary Water Access and Conveyance licences

3.4 Environmental diversions

At the request of DPE-EHG, 837 ML of environmental water was delivered in 2022/23 as shown in **Table 9**. This volume is accounted for in total diversions and deliveries shown in **Table 7**.

Month	Cudgel Creek	Turkey Flats	Yanco Ag	Nericon Swamp	Total
Jul-22	0	0	0	0	0
Aug-22	0	0	0	0	0
Sep-22	0	0	0	0	0
Oct-22	0	0	0	0	0
Nov-22	0	0	0	0	0
Dec-22	0	0	0	0	0
Jan-23	0	0	0	0	0
Feb-23	57	0	0	0	57
Mar-23	238	0	0	0	238
Apr-23	0	0	0	117	117
May-23	0	0	0	35	35

Table 9 Environmental water diversions for 2022/23

Month	Cudgel Creek	Turkey Flats	Yanco Ag	Nericon Swamp	Total
Jun-23	0	190	200	0	390
Total (ML)	295	190	200	152	837

Due to flows from the Mirrool Creek exceeding the capacity of the Active and Intermediate cells at Barren Box Storage and Wetland (BBSW) approximately 42,157 ML was diverted into the Barren Box Wetland cell. Diversion to the wetland cell occurred in September 2022, December 2022, April 2023 and June 2023.

3.5 Water discharged from area of operations

Monthly discharge volumes for each discharge monitoring point are shown in **Table 10**. A total of 118,046 ML was discharged from MI's Area of Operations during 2022/23.

Month	LAG (41010940)	ROCUDG (41010005)	YMS (410083)	GMSRR (41010921)	MIRFLD (41010163)
Jul-22	3.3	0 ^B	0	0.6	0
Aug-22	0 ^B	0 ^B	0	0.6 ^B	7,459.6
Sep-22	0 ^B	0 ^B	0	0 ^B	13,053.1
Oct-22	0 ^B	0 ^B	0	0 ^B	34,712
Nov-22	0 ^B	0 ^B	0	0 ^B	44,340
Dec-22	757.6 ^N	151 [?]	0	201*	10,744
Jan-23	617.2 ^R	87.6 [?]	0	1.2*	2.8
Feb-23	836.8 ^R	8.1 ^R	0	10.5	0.1
Mar-23	946.6 ^R	1,248 ^N	0	12.9	652.5
Apr-23	756.2 ^R	190	0	0	1,152.5
May-23	31.3	33.6	0	1.5	0
Jun-23	13.8	14.1 ^R	0	5.6	0
Total	3,963	1,733	0	233.9	112,116

Table 10 Monthly discharge volumes (ML) recorded at monitoring points

Note: All figures in ML

B Backed-up stage

N Rating table extrapol. within x1.5 max flow

R Rating table extrapolated

? Irregular data use with caution

*Debris affecting sensor

The total discharged volumes from MI's Area of Operations compared to prior years is presented in **Table 11**.

The total volume discharged in 2022/23 was notably higher than the prior years. This was a result of several factors including:

- Above average rainfall
- Saturated catchments
- Implementation of operational guideline measures via discharges to the Lower Mirrool Creek
 Floodway in response to excess flows from the Mirrool Creek upper catchment and MI's Channel 13 drainage system.

Table 11 Total volumes discharged from the MIA

0	
Year	Total discharged (ML)
2022/23	118,046
2021/22	8,595
2020/21	900
2019/20	127
2016/2017	122,092

3.6 Water balance

The annual water balance in **Table 12** has been produced to meet condition 2.12 of the Combined Approval Monitoring and Reporting Plan. To assist with interpretation of this water balance, each line has been referenced to the specific requirements of Condition 2.12.

The conveyance volumes represented in this water balance account for seepage, evaporated water from in channel and storage, and general conveyance required to deliver water to customers.

Total gross diversions of 613,614 ML for 2022/23 were used to generate water deliveries of 585,774 ML to customers, 837 ML for environmental water diversions plus 42,157 ML into Barren Box Wetland cell.

The water captured volume in **Table 12** includes water that entered MI's area of operations via Mirrool Creek due to the upper catchment area flooding. Excess flood flows from the Mirrool Creek upper catchment led to the release of 112,116 ML of water via the Mirrool Creek Floodway which is captured below in overland flood discharge.

Condition	Sources	2022/23	2021/22	2020/21	2019/20	2016/17
2.10 (a) (b) (c)	River diversions	613,614	684,959	880,456	349,523	780,083
2.12 (c)	Internal storage (July 1)	39,152	35,402	4,724	2,434	29,042
2.12 (b)	Water captured (estimate)	156,269	15,113	5,870	0	171,376
	Total	809,035	735,474	891,050	351,957	980,501
	Applications					
2.10 (d)	Deliveries to customers (river and storages)	585,774	645,499	748,988	281,658	670,319
2.11 (a)	Discharges (without credit)	48,086+	12,872	4,822	127	121,363
2.11 (b)	Environmental water diversions	837	583	3,483	3,612	986
2.12 (b) loss	Overland flood discharge	112,116	0	0	0	27,555
2.12 (b) loss	Conveyance	27,003	37,368	98,355	61,836	127,960
2.12 (c)	Internal storage (June 30)	35,219	39,152	35,402	4,724	32,318
	Total	809,035	735,474	891,050	351,957	980,501

Table 12 Annual water balance as at 1 July 2023 and prior years

Note: All figures in ML.

+ includes 42,157 ML for BBS Wetland Cell for 2022/23

4 Water use

4.1 Crop statistics

Customers are required to nominate the intended purpose of their water use, including crops, when placing water orders. This data is not validated at the farm level and is therefore an estimate only. **Table 13** shows water deliveries and estimated crop water use for 2022/23. It is important to note the water use data presented for the total area of crop is influenced by seasonal rainfall, ETo and irrigation practices.

The 'Not Defined' category refers to water taken by MI customers without placing an order. This information is obtained after the meter is read and does not provide an opportunity to allocate the water to a use.

Crop/ purpose	Area (ha)	Volume delivered (ML)	Crop water use (ML/ha)
Citrus	7,197	24,721	3.4
Cotton	13,626	71,273	5.2
Environment	1	837	342.6
Industrial	26.2	7,643	291.7
Nuts	8,713	41,562	4.8
Other crops	209.1	3,139	15
Other fruits	1,022	3,232	3.2
Plantation	93	29	0.3
Rice	21,034	259,067	12.3
Stock & Domestic	240.6	5,740	23.9
Summer cereals	1,945	17,196	8.8
Summer oilseeds	760	4,184	5.5
Summer pasture	1,467	8,274	5.6
Town supply	3	8,185	2,728.4
Vegetables	1,595	6,587	4.1
Vines	16,656.3	50,097	3
Winter cereals	20,276	23,718	1.2
Winter oilseeds	3,728	4,860	1.3
Winter pasture	5,081	14,285	2.8
Not defined*	-	31,981	-
Total	103,672	586,611	

Table 13 Summary of water deliveries for major crop groupings 2022/23

*No crop type assigned

A comparison of crop water use for 2022/23 with prior years is presented in Table 14 and Figure 3.

A 100% general security allocation was maintained and saw an increase in seasonal summer cropping deliveries in 2022/23. This was coupled with high annual rainfall which enabled on farm water storage to be utilised throughout summer. Rice crops accounted for the highest volume of water deliveries in the MIA, followed by citrus, vines and other fruits. In previous years, rice, cereals and oil seeds along with cotton were the main crop types receiving the highest proportion of water delivery volumes.

Figure 3 shows this reporting year's water deliveries correlate with the 2016/17 comparison year. The seasonal outlook and allocations were very similar for both years. The biggest difference between the two years is in deliveries to rice, which received 45,133 ML less deliveries in 2022/23 than in 2016/2017. This can be attributed to higher deliveries in 2016/17 with 49% of deliveries in 2016/17 going towards rice, compared to 46% of deliveries going to rice in 2022/23.

Cereals and oil seeds experienced similar deliveries compared to 2016/17 season despite this crop type receiving the greatest decrease of deliveries by 56,783 ML when compared to last season 2021/22. Deliveries for this crop type in 2022/23 were 79,036 ML less than the average of the preceding two reporting years. This is the result of climatic conditions experienced throughout the last two years.

Year	Rice	Pasture	Cereals and oil seeds	Vegetables	Citrus, vines, other fruits	S&D, towns, industrial	Cotton	Other crops, plantations+	Nuts+
2022/23	259,06	22,559	49,958	6,587	78,050	13,383	71,273	3,168	41,562
2021/22	240,20	16,526	106,741	7,321	75,756	12,422	99,949	2,969	45,055
2020/21	250,51	25,742	151,247	11,587	121,579	27,092	62,778	56,	611
2019/20	27,302	4,346	30,105	10,655	114,229	22,216	1,170	23,	969
2242/17							~~ ~~ ·		
2016/17	304,20	26,030	57,479	10,129	109,257	9,844	82,004	71,	376

Table 14 Total deliveries to major crop types 2022/23 compared to previous years

Note: All figures in ML. Excludes 'not defined' deliveries from Table 13.

+ Prior to 2021/22 Nuts were reported under 'other crops, plantations'

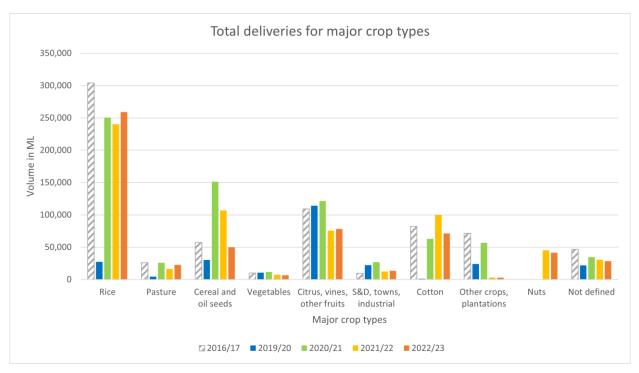


Figure 3 Comparison of total water deliveries to major crop types

4.2 Irrigation intensity

Irrigation intensity is displayed in **Figure 4** by water use (ML/ha), from data obtained from customer deliveries and is displayed per property. This map identifies locations of landholdings using between > 0 to 4; > 4 to 8; and above 8 ML/ha of irrigation water.

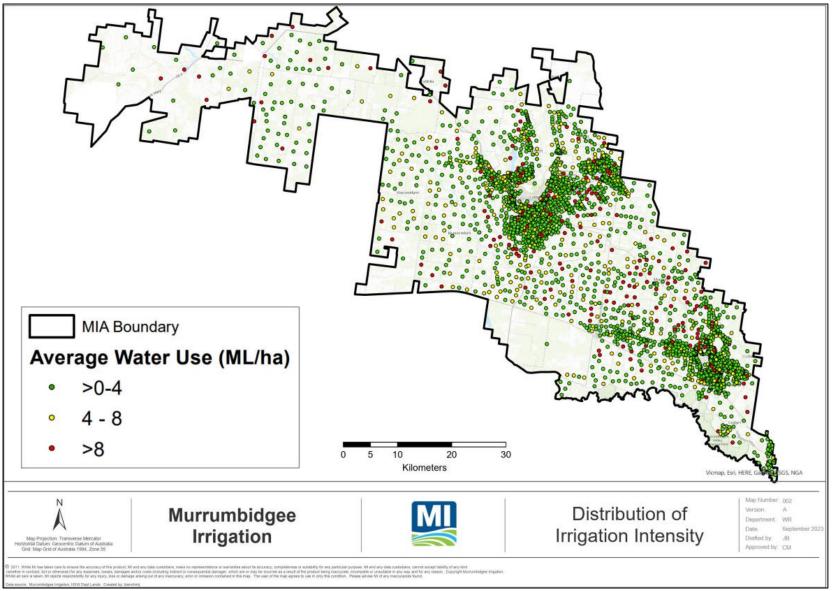


Figure 4 Distribution of irrigation intensity across the MIA

5 Salinity and salt load

5.1 Extracted salt load

The monthly mean electrical conductivity (EC) values and extracted salt loads are calculated using EC sensors at MI's two river offtake sites NARREG and Sturt and presented in **Table 15**. Attachment B: VENTIA flow, EC, and salt load monitoring financial year report contains Ventia's report which outlines the data and quality assurance information.

		STURT		NARREG			
Month	Flow (ML)	Mean EC (μS/cm)	Salt (t)	Flow (ML)	Mean EC (μS/cm)	Salt (t)	
Jul-22	2,863	155 [⊤]	181 ^v	6,398	163	619 ^v	
Aug-22	481	148	85 ^v	4,603	198	542	
Sep-22	613	182	66 ^v	3,517	211	467	
Oct-22	58	183	77 ^v	3,377	208	253	
Nov-22	5,041	182	492 ^ĸ	19,001	185	1,996	
Dec-22	34,965	180	3731 ^ĸ	96,705	182	10,220	
Jan-23	36,119	127	2855 ^ĸ	115,330	144	10,480	
Feb-23	32,791	124	2399 ^v	104,011	139	8,469∨	
Mar-23	22,391	133	1757 ^v	71,404	142	5,833 ^ĸ	
Apr-23	281	199	52 ^ĸ	13,347	242	1,900 ^ĸ	
May-23	7,559	270	1057 ^v	24,414	268 ^v	3,250∨	
Jun-23	2,316	149 [⊤]	245 [⊤]	6,029	163 ^v	515 ^v	
Total	145,478		12,997	468,136		44,544	

Table 15 Total extracted salt load for 2022/23

V Operational data

K Minor editing

T Probe out of water/below instrument threshold

The total extracted salt loads for 2022/23 compared to prior years is presented in Table 16.

During 2022/23, an estimated 57,541 tonnes of salt was imported into MI's area of operations from the Murrumbidgee River. A decrease of 2,603 tonnes of salt was imported into MI's area of operations compared to 2021/22.

During 2016/17 MI received more diversions than 2022/23, however, during 2022/23 the salt volume imported into MI's area of operation increased by 29% compared to 2016/17. Higher EC was recorded at STURT and NARREG in 2022/23, with a maximum EC of 441 μ S/cm compared to a maximum EC of 108 μ S/cm recorded in 2016/17.

Table 16 Extracted salt load (t) fo	r 2022/23 compared to prior years
-------------------------------------	-----------------------------------

Veer		Extracted salt load (t)					
Year	Diversions (ML)	STURT	NARREG	Total			
2022/23	613,614	12,997	44,544	57,541			
2021/22	684,959	15,965	44,179	60,144			
2020/21	880,456	19,975	53,357	73,332			
2019/20	349,523	1,787	17,030	18,817			
2016/17	780,083	11,722	32,903	44,625			

5.2 Discharged salt load

There are five licensed locations where discharge water from MI's area of operations is monitored in accordance with MI's Combined Approval and EPL 4651. The locations of these sites are shown in **Figure 2**.

Flow, EC and salt load data for these sites is presented in **Table 17**. During periods of no or low flow, while EC measurements continue to be recorded from the standing pool, no salt load is discharged. Accordingly, minor flows do not trigger accurate measurements to enable robust salt load calculations.

An estimated salt load of 18,464 tonnes were discharged from MI's area of operations through the five discharge monitoring points in 2022/23.

Month	Flow (ML)	Mean EC (µS/cm)	Min EC (μS/cm)	Max EC (μS/cm)	Salt load (t)			
Yanco Main Southern Escape (YMS) 410083								
Jul-22	-	375 [⊤]	246 [⊤]	732 [⊤]	-			
Aug-22	-	218 [⊤]	190 [⊤]	323 [⊤]	-			
Sep-22	-	267 [⊤]	202 [⊤]	331 [⊤]	-			
Oct-22	-	157 [⊤]	101 [⊤]	188 [⊤]	-			
Nov-22	-	137	74.2	191	-			
Dec-22	-	239	128	397	-			
Jan-23	-	185	131	294	-			
Feb-23	-	179	133	255	-			
Mar-23	-	170	109	258	-			
Apr-23	-	212	80.1	320	-			
May-23	-	302	188	405	-			
Jun-23	-	244	206	268	-			
Total	0				0			
		Gooragool Lagoon	Escape (LAG) 4101	.0940				
Jul-22	3.3 ^B	448 [⊤]	9.4 [⊤]	612 [⊤]	1 ^T			
Aug-22	0 ^B	_ ^B	_ ^B	_ ^B	0 ^B			
Sep-22	0 ^B	_ ^B	_ ^B	_B	0 ^B			
Oct-22	0 ^в	_ ^B	_ ^B	_ ^B	0 ^B			
Nov-22	0 ^B	_ ^B	_ ^B	_ ^B	0 ^B			
Dec-22	757.6 ^N	321	182	846	134 ^N			
Jan-23	617.2 ^R	245 [*]	138 [*]	554 [*]	68*			
Feb-23	836.8 ^R	-*	-*	-*	0*			
Mar-23	946.6 ^R	134*	84.7 [*]	177*	6*			
Apr-23	756.2 ^R	168	46.4	257	72 ^R			
May-23	31.3	312	73.3	514	5			
Jun-23	13.8	309	47.1	967	2			
Total	3,962.8				288			
	G	ogeldrie Main Southe	rn Escape (GMSRR)	41010921				
Jul-22	0.6	176 [⊤]	153 [⊤]	188 [⊤]	0 ^τ			

 Table 17 Monthly summary of flow, EC, and salt loads at monitoring points for 2022/23

Month	Flow (ML)	Mean EC (µS/cm)	Min EC (μS/cm)	Max EC (μS/cm)	Salt load (t)
Aug-22	0.6 ^B	93 [₿]	74.2 ^B	103 ^B	0 ^B
Sep-22	0 ^в	_ ^B	_ ^B	_ ^B	0 ^B
Oct-22	0 ^B	_ ^B	_ ^B	_ ^B	0 ^B
Nov-22	0 ^B	_ ^B	_ ^B	_ ^B	0 ^B
Dec-22	201*	298 ^B	233 ^B	377 ^B	6*
Jan-23	1.2*	332	92.3	664	0*
Feb-23	10.5 ^M	316 ^M	192 ^M	498 ^M	2 ^M
Mar-23	12.9	253	153	369	2
Apr-23	0	519 [⊤]	69.1 [⊤]	865 [⊤]	0 ^τ
May-23	1.5	_T	_T	_⊺	0 [⊤]
Jun-23	5.6	_T	_T	_T	0 [⊤]
Total	233.9				10
		Cudgel Creek Esca	pe (ROCUDG) 4101	0005	
Jul-22	0 ^B	165 ^B	160 ^B	169 ^в	0 ^B
Aug-22	0 ^B	168 ^B	162 ^B	176 ^в	0 ^B
Sep-22	0 ^B	_ ^B	_ ^B	_ ^B	0 ^B
Oct-22	0 ^B	_ ^B	_ ^B	_ ^B	0 ^B
Nov-22	0 ^B	_ ^B	_B	_ ^B	0 ^B
Dec-22	151 [?]	241 [?]	198 [?]	321 [?]	21 [?]
Jan-23	87.6 [?]	430 [?]	319 [?]	595 [?]	22 [?]
Feb-23	8.1 ^R	47 2 [⊤]	461 [⊤]	501 [⊤]	2 ^T
Mar-23	1,248 ^N	194 [?]	129 [?]	295 [?]	162 [?]
Apr-23	190	143	128	156	16
May-23	33.6	145	118	179	3
Jun-23	14.1 ^R	177	145	227	1 ^R
Total	1,732.3				227
		Mirrool Creek Floo	dway (MIRFLD) 410	010163	
Jul-22	0	-	-	-	0
Aug-22	7,459.6	379.55	311.2	447.9	1,812
Sep-22	13,053.1	349.2	349.2	349.2	2,917.2
Oct-22	34,712	358.6	358.6	358.6	7,966.5
Nov-22	44,340	165.2	165.2	165.2	4,688
Dec-22	10,744	-	-	-	0
Jan-23	2.8	-	-	-	0
Feb-23	0.1	-	-	-	0
Mar-23	652.5	357.4	357.4	357.4	149.3
Apr-23	1,152.5	550.5	550.5	550.5	406
May-23	0	-	-	-	0
Jun-23	0	-	-	-	0
Total	112,116.6				17,939.1

Note: See Ventia's report in Attachment B for further details. EC values for MIRFLD include compliance and due diligence monitoring results which were recorded during extended periods of release to the floodway.

Table 18 details the discharged salt load for the current reporting year and prior years, including the reference year.

While the salt load in tonnes increased, as expected with the higher volume discharged overall, the percentage of salt load per megalitre is slightly below the average salt load percentage from 2019/20 to 2021/22 and lower than the baseline year of 2016/17. During August to December 2022, large volumes of water were released to the Mirrool Creek Floodway (MIRFLD) to mitigate flooding in the MIA. Due to releases at MIRFLD being regulated, EC results are based on compliance and due diligence field monitoring during the operation of the MIRFLD. During the periods of extended release, salt load calculations cannot fully represent the total salt load discharged via MIRFLD. Accordingly, the discharged salt load was below average in 2022/23. The percentages for these years are shown in **Table 18**.

The salt load per megalitre recorded over the past four years was consistently low, including where water was discharged in larger quantities. This can be attributed to MI's efforts to recycle irrigation discharge water within the MIA and our customer's efforts to improve water efficiency by recycling waters on-farm.

Year	Water discharged (ML)	Discharged Salt load (t)	Salt load/volume discharged (t/ML)
2022/23	118,046*	18,464	0.156
2021/22	8,595	1,555	0.181
2020/21	900	88.5	0.098
2019/20	127	25	0.197
2016/17	122,092*	34,230	0.28

 Table 18 Discharged salt load 2022/23 compared to prior years

* Flood events

5.3 Salt load summary

The salt loads presented in **Table 19** displays 57,541 tonnes of salt were received through diversions recorded at MI's authorised supply works (NARREG and STURT). A total of 18,464 tonnes were discharged from the area of operations and an estimated 39,077 tonnes were retained within the MIA.

Table 19 Salt load summary for 2022/23

Extracted	Salt load (t)
STURT	12,997
NARREG	44,544
Total extracted	57,541
Discharged	Salt load (t)
YMS	0
GMSRR	10
LAG	288
ROCUDG	227
MIRFLD	17,939.1
Total discharged	18,464
Retained	Salt load (t)
MIA	39,077

It is important to note that this is a simple annual salt balance that considers salt loads entering via authorised works and leaving via approved discharge locations. The balance does not consider other factors that impact total salt loads in the MIA.

No additional data is held by MI that is relevant to the assessment of salinity impacts under the Murray Darling Basin – Basin Salinity Management 2030.

6 Groundwater conditions

The following information is provided from MI's groundwater network monitoring only. MI cannot comment on influences on groundwater from other sources, including groundwater extraction by private owners or other entities and any recharge or disturbance from other developments or activities.

NRAR, via their Annual Review of MI's last Annual Compliance Report, noted MI is non-compliant with Condition 2.17 regarding having 90% of our piezometer network usable. NRAR acknowledged that MI are working toward compliancy with DPE Water.

MI is currently investigating the rationalisation of our groundwater network, including the tubewell sites. MI engaged a specialist consultant to undertake this investigation and assist in any application for amending the network under our Combined approval. MI is liaising with DPE Water staff on this matter to ensure we meet the requirements of any amendment, including appropriate supporting information as justification for the requested change.

6.1 Groundwater monitoring and reporting

Groundwater monitoring was completed in the last quarter of 2022. The network consists of piezometers in the Shallow and Deep Shepparton Formation and a smaller monitoring network in the Calivil Formation.

A total of 641 piezometers are required to be monitored and reported on as per **Attachment B** of the Monitoring and Reporting Plan. The locations of these bores are displayed in **Figure 5**, which has not changed from the prior financial year report.

Factors affecting the percentage read includes an increasing number of piezometers found to be destroyed by land development or other activities outside of MI's control. In 2022, flooding led to high water levels in the Murrumbidgee River and associated estuaries, along with saturated access across the MIA causing limited access to piezometers in some areas. Where access was available, a concerted effort was made during the 2022 monitoring rounds to validate where piezometers were destroyed or not found. Of the piezometers available to be read, 96% were read in 2022.

Due to the wet conditions and flood warnings of the Murrumbidgee River MI was unable to complete the monitoring in August (+/- 2 weeks) in line with condition 2.17 and Attachment 2 of MI's Combined Approval. MI notified NRAR in September 2022 upon becoming aware of the constraints. The monitoring was completed between August – November 2022 once safe access became available.

Table 20 provides a status summary of the groundwater piezometers monitored in 2022.

A total of 540 piezometers were read during the monitoring, a decrease of seventeen from the prior year. The total piezometers read equates to 84.24% of the network.

Total bores	Total destroyed+	Dry, flooded or blocked	Total read	Total unable to read
641	77	46	540	24++

 Table 20 Groundwater piezometer status summary 2022

Note: + piezometers damaged or destroyed in the field due to land development or other uses or actions. ++ includes 24 inaccessible piezometers due to flood effected access.

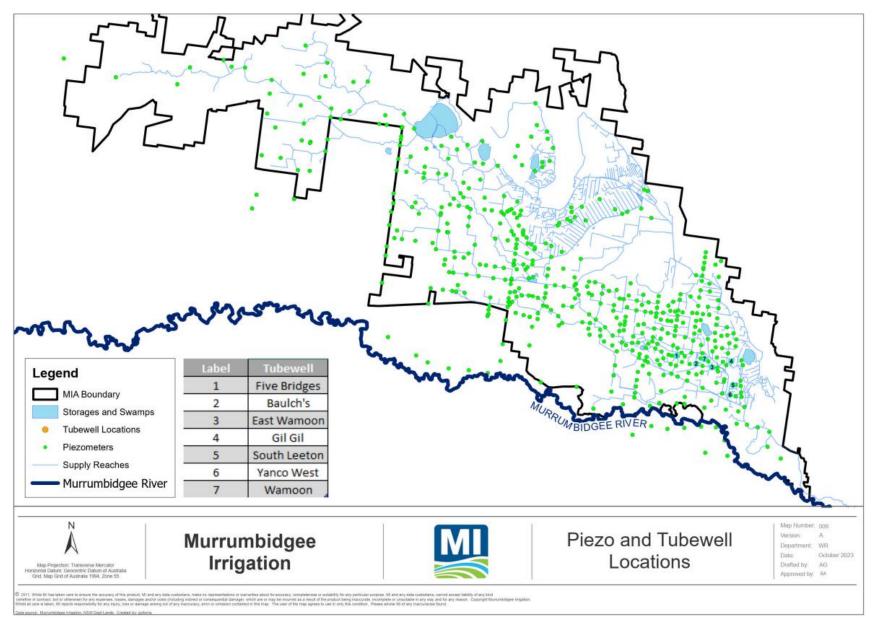


Figure 5 Location of piezometers and tubewells in the MIA 2022/23

Depth to water table data is reported for 2022/23, 2021/22, 2020/21, 2019/20 and 2010/11. The groundwater data, read in August 2022, is more likely to be influenced by the prior year's climatic and land conditions. The 2010/11 year was chosen as the historical reference year for groundwater. That year had climatic conditions such as rainfall and evapotranspiration, along with announced allocation in the MIA comparable to the 2021/22 year (i.e. the year prior to the readings).

The number of piezometers read within depth ranges for 2022 are shown in **Table 21** and includes the three prior reporting years and the 2010 reference year. **Table 22** provides a comparison of the three depth class areas relative to the prior three years and a historical reference year.

Year	<2M of surface	2-4M of surface	>4M of surface	% <2M of surface	% 2-4M of surface	% >4M of surface	Total
2022	52	110	378	10%	21%	70%	540
2021	23	100	431	4%	18%	78%	554
2020	12	86	437	2%	16%	82%	535
2019	5	96	386	1%	20%	79%	487
2010	6	103	752	1%	12%	87%	861

 Table 21
 Number and percent of total piezometers readings within each depth range

Table 22 Change in groundwater depth

Ground-	Depth to water table area (ha)				Change in depth				
water					[+ = rising] [- = falling]				
depth					2022	2022	2022	2022	
range	2022	2021	2020	2019	2010	vs	VS	VS	vs
(m)						2021	2020	2019	2010
<2M	11,103.4	3,803	178	161	8.5	+7,301	+10,925	+10,942	+11,095
<2-4M	57,736	50,627	24,392	26,924	30,126	+7,109	+33,344	+30,812	+27,610
>4M	301,290.8	306,618	336,117	343,045	330,553	-5,327	-34,826	-41,754	-29,262
Total	370,130.2	361,048	360,687	370,130	360,687				

Note: Previous years' data was cropped to match MI's area of operations for comparison.

Table 21 shows the standing water level (SWL) of piezometers is rising, with 30% of the network recording standing water levels within 4 meters of the surface level. This has resulted in an 8% decrease in SWLs recorded at depths greater than 4m compared to the prior reporting year. A small influence may have come from the reduction of 17 piezos read for the year.

Table 22 contains information using SWLs at known points interpolated to each pixel within MI's area of operations using the nearest neighbour resampling method. The area for each depth class equals the count of pixels within the depth class * pixel size. Data for each year in the table was cropped to the extent of MI's area of operations for comparison. This information can change if certain piezometers are not read due to being blocked, flooded, destroyed or lack of access.

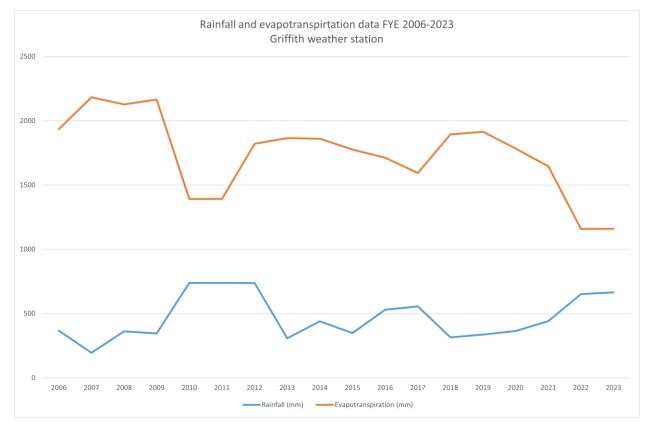


Figure 6 Rainfall and evapotranspiration data FYE 2006-2023 - Griffith weather station

Figure 6 shows similar climatic patterns between the lead up to 2010 and 2022, with rainfall increasing while evapotranspiration is reducing. In addition, in 2010/11 the MIA encompassed a larger land area compared to 2022/23, while diversions in 2010/11 were 108,438 ML less than the current reporting year. Indicating that in 2022/23 there was more water in use in the MIA resulting in greater influence on groundwater trends than there had been in 2010/11.

The overall trend in groundwater levels using both point data from **Table 21** and area data from **Table 22** shows groundwater levels are rising when compared to both recent years and the benchmark year of 2010. The extent of groundwater within 4m of the surface has increased in hectares from 2021 to 2022, and from 2010. The rise is consistent with consecutive years of above average rainfall with saturated catchments.

In 2015, approval was given for the groundwater piezometer network to be reduced. As a result, in 2022 piezometer readings in some areas are indicative of a larger area than they had been in 2010, influencing the interpretation of the depth to water table area.

6.2 Groundwater salinity

Groundwater salinity was not requested by the Minister for 2022/2023 reporting year.

6.3 Shallow Shepparton Formation

The depth to water table for piezometers in the shallow Shepparton Formation are presented in **Figure 7** to **Figure 11**. Groundwater levels in this formation are expected to be highly influenced by seasonal rainfall, geology, and irrigation. A comparison between **Figure 7** and **Figure 8** demonstrates that the groundwater levels have risen in comparison with the prior year.

In 2022, forty piezometers in the Shallow Shepparton Formation experienced a greater than 1 m rise in the SWL, with one of those piezometers recording a rise greater than 5 m. In 2021, twenty-four piezometers recorded a rise in SWL of more than 1 m from the prior year. When compared to 2010 (**Figure 11**), 2022 groundwater piezometers show a higher number of standing water levels within 5.1 m of the surface level. Both 2010/11 and 2022/23 saw high annual rainfall, low ETo, and similar diversions from the river. While the climatic conditions and deliveries in 2021/22 were very similar to 2022/23, 2009/10 had similar deliveries but much lower rainfall and higher ETo than 2010/11.

Factors contributing to shallower groundwater in 2022/23 include consecutive years of above average rainfall leading to saturated catchments. This resulted in the flooding of the Murrumbidgee River and local water bodies for several months, including during groundwater monitoring in 2022. The influence of wet conditions over an extended period of time has led to a rise in SWLs in the current reporting year.

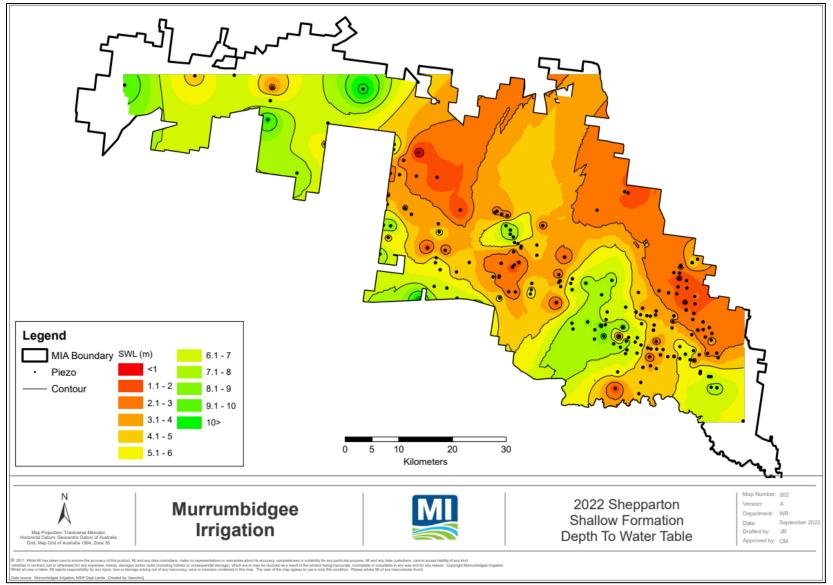


Figure 7 Shallow Shepparton Formation – depth to water table 2022

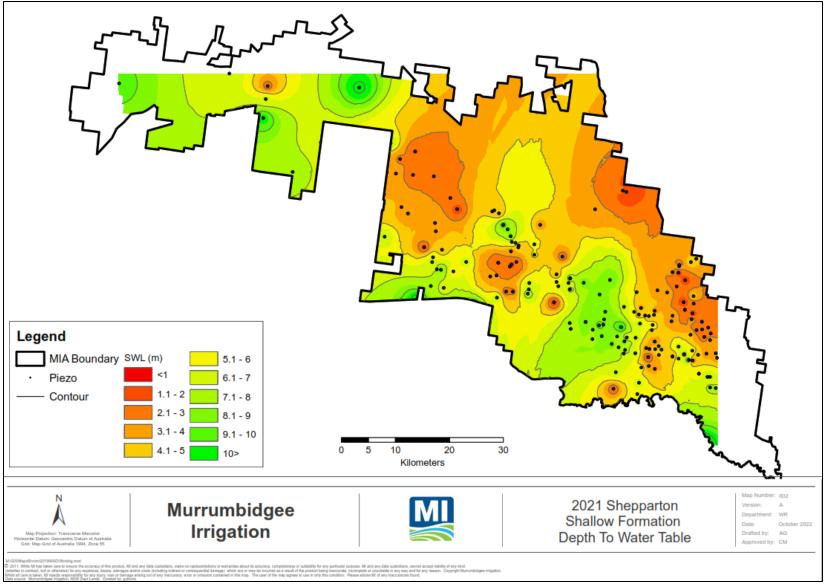


Figure 8 Shallow Shepparton Formation – depth to water table 2021

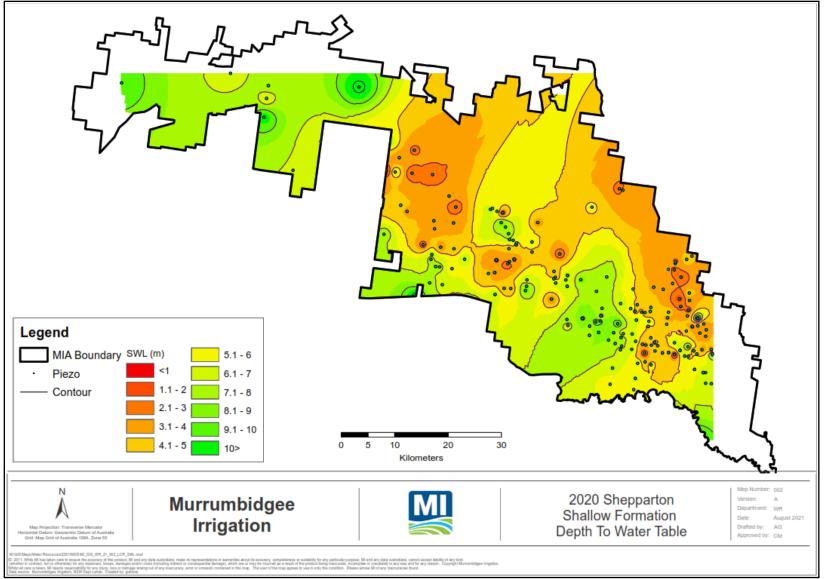


Figure 9 Shallow Shepparton Formation – depth to water table September 2020

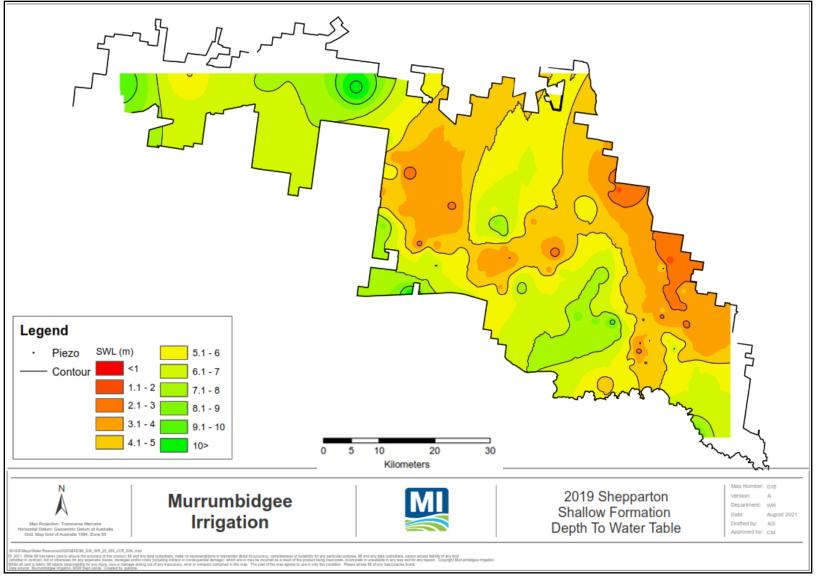


Figure 10 Shallow Shepparton Formation - depth to water table, September 2019

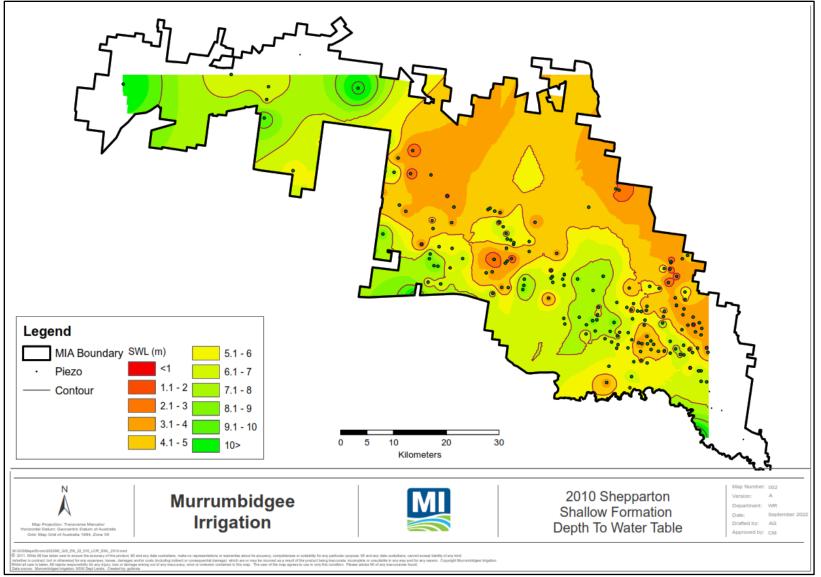


Figure 11 Shallow Shepparton Formation - depth to water table, September 2010

6.4 Deep Shepparton Formation

Depth to water table for piezometers in the deep Shepparton Formation are presented in **Figure 13** to **Figure 16**.

Groundwater levels in the deep Shepparton Formation are influenced by the shallow Shepparton Formation in the long term. This means that seasonal rainfall, irrigation practices and geology also impact the SWLs recorded in this aquifer.

Like the shallow formation, the number of piezometers in the deep Shepparton Formation recording a rise in SWL of more than 1m has increased by 65 piezometers since 2021. A comparison of 2022 (**Figure 12**) and 2021 (**Figure 13**) demonstrates an increase in groundwater levels within 5 m of the surface. The number of piezometers recorded in 2022 within 2 m of the surface has increased in this formation since 2010, with no piezometers in this depth range represented in 2010 (**Figure 16**), compared to several areas of shallow water represented in 2022 (**Figure 12**). However, large areas of the deep Shepparton Formation remain where SWL readings are deeper than 9 m below surface level, which is consistent across all reporting years.

Contributing factors influencing the rise in groundwater in 2022 in this formation include consecutive years of high river diversions, above average annual rainfall, and saturated catchments. The rise in groundwater in the shallow Shepparton Formation over the past several reporting years is reflected in the rising groundwater levels of the deep Shepparton Formation.

Groundwater extraction may also influence levels in this aquifer; however, MI does not have access to this data.

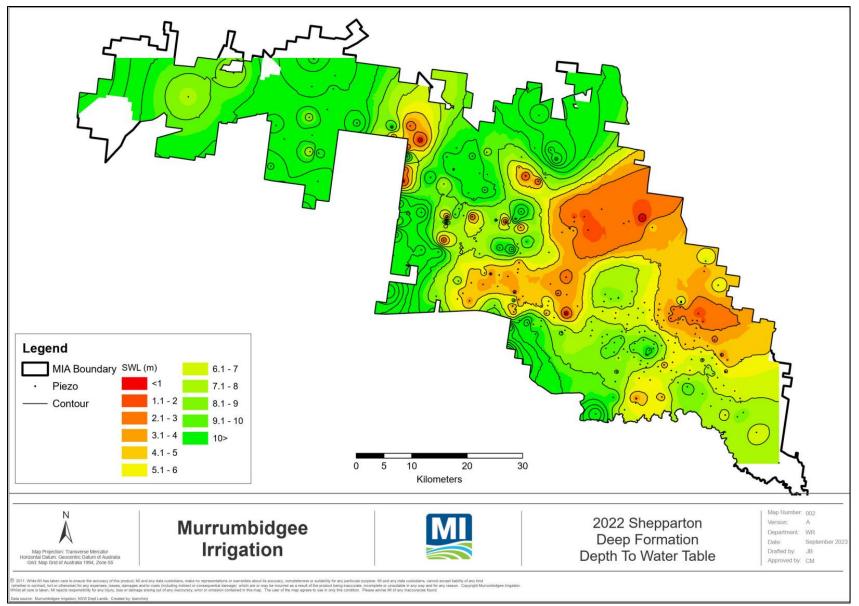


Figure 12 Deep Shepparton Formation - depth to water table, 2022

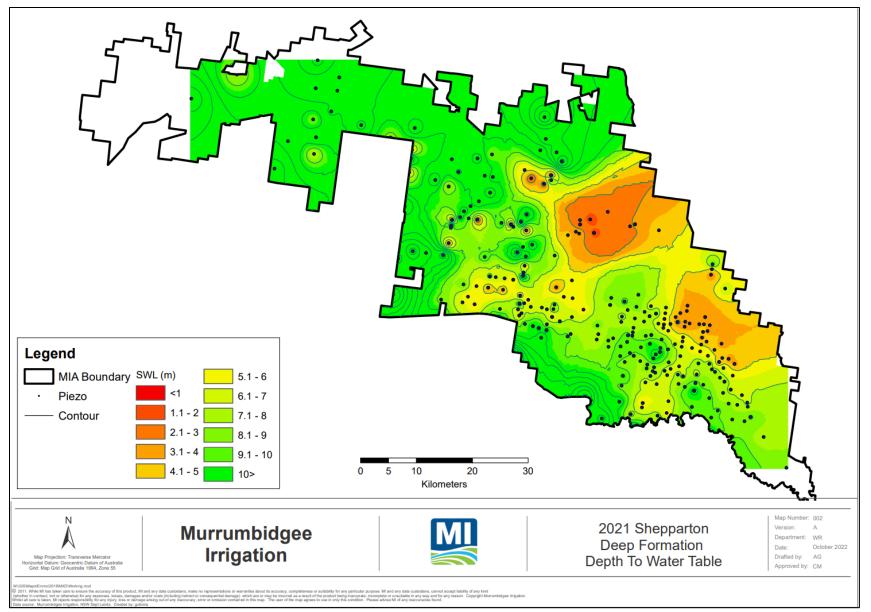


Figure 13 Deep Shepparton Formation - depth to water table, 2021

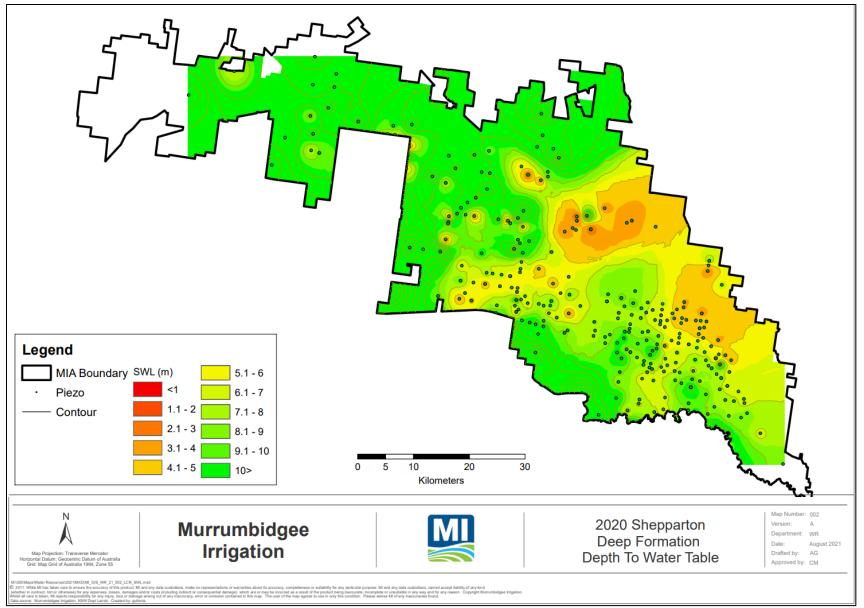


Figure 14 Deep Shepparton Formation - depth to water table, September 2020

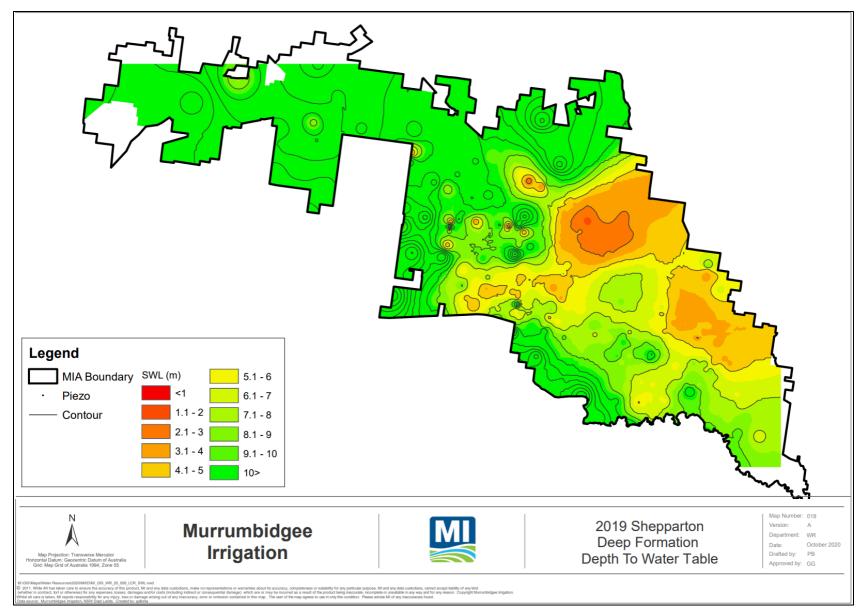


Figure 15 Deep Shepparton Formation - depth to water table, September 2019

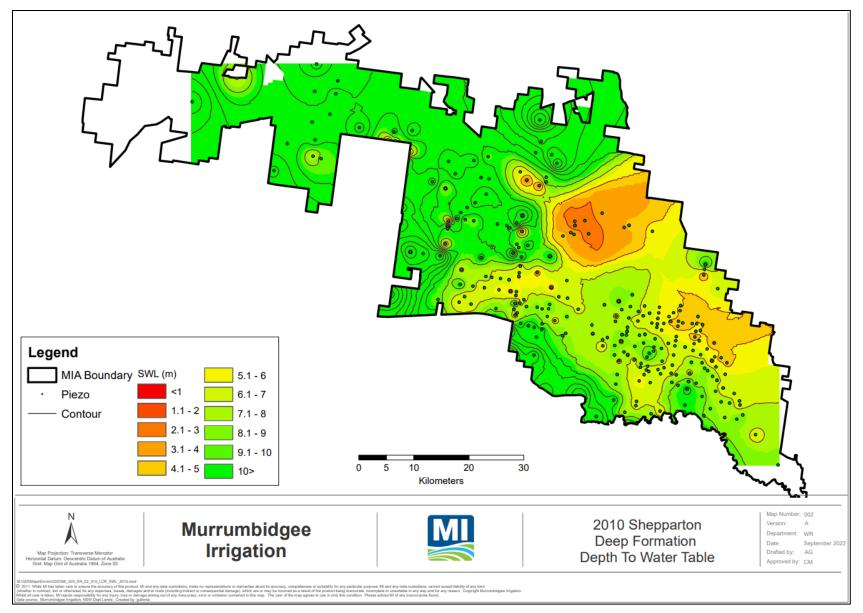


Figure 16 Deep Shepparton Formation – depth to water table, September 2010

6.5 Calivil Formation

Depth to water table for piezometers in the Calivil Formation are presented in **Figure 18** to **Figure 21.**

Level trends in this formation generally represents drawdown from the shallow and deep Shepparton aquifers. **Figure 17** (2022) shows a small increase in piezometers recording a SWL of less than 6 m deep compared to **Figure 18** (2021). In all reporting years, including the baseline year of 2010, the majority of piezometers record a SWL of greater than 10 m deep. Overall, the levels in this aquifer remain consistent.

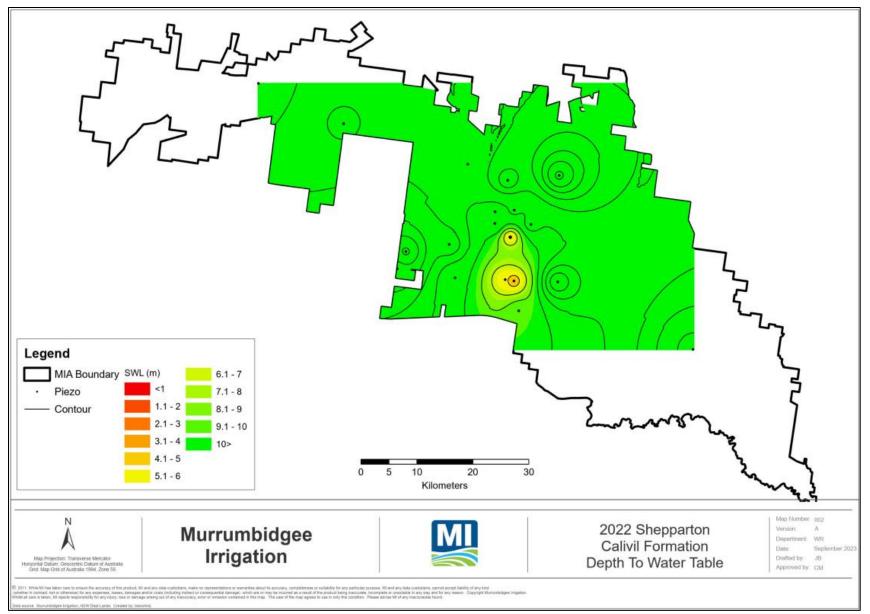


Figure 17 Calivil Formation – depth to water table, 2022

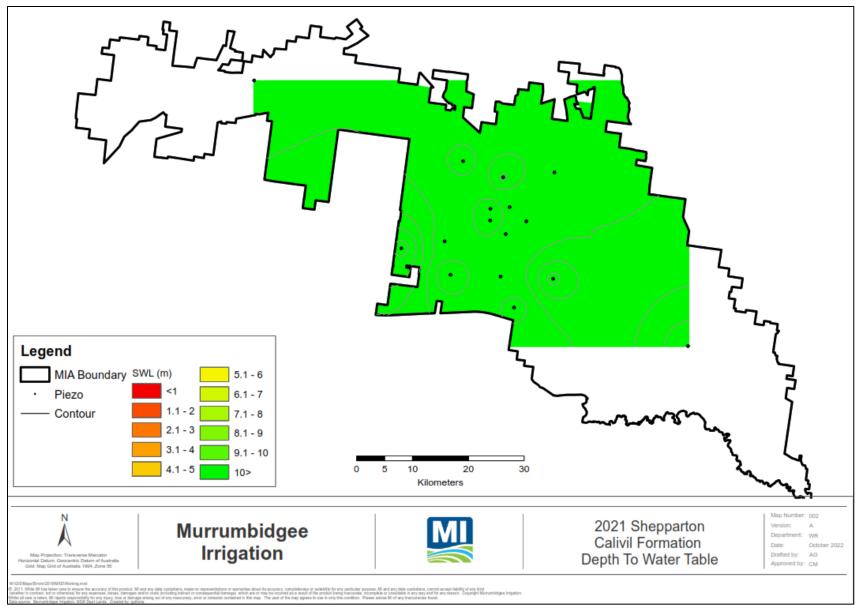


Figure 18 Calivil Formation – depth to water table, 2021

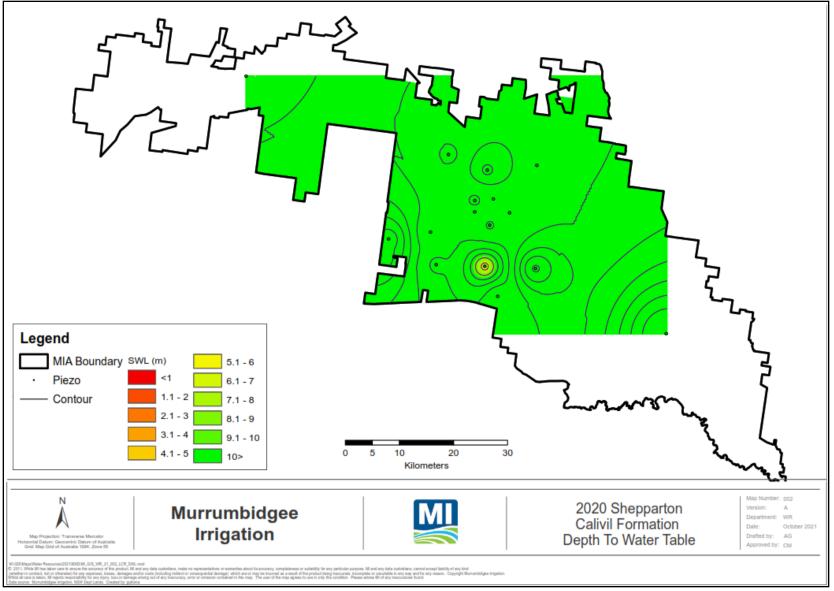


Figure 19 Calivil Formation - depth to water table, September 2020

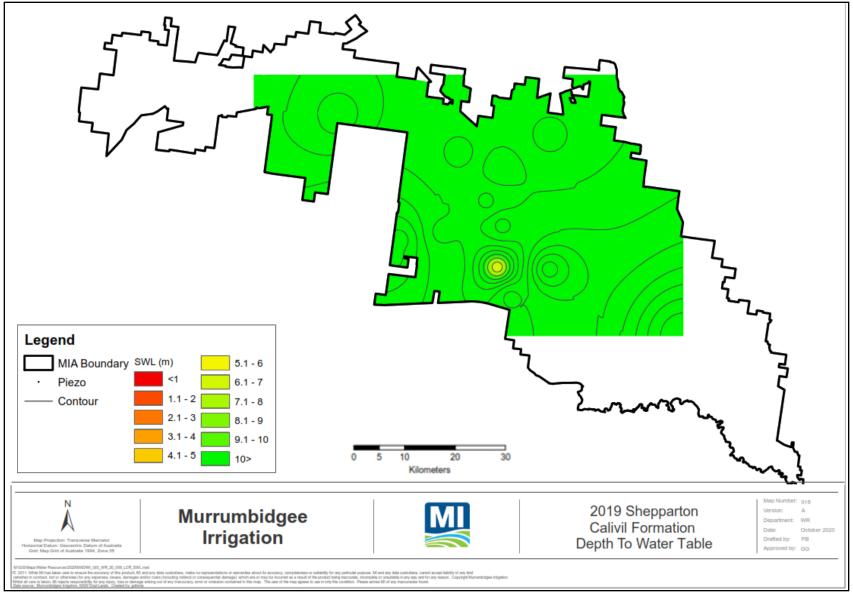


Figure 20 Calivil Formation - depth to water table, September 2019



Figure 21 Calivil Formation - depth to water table, September 2010

7 **Tubewells**

MI monitors the volume of water and salt load pumped from seven tubewells within the MIA when operational. The locations of the tubewells are shown in **Figure 5**.

No tubewells were operated during the 2022/23 reporting period.

MI is collaborating with the Department of Planning and Environment – Water (DPE Water) to pursue the rationalisation of our groundwater network as detailed under section 6. It will include DPE Water issuing MI a water supply work approval and a specific purpose access licence for the tubewell sites.

8 New measures to limit groundwater recharge and discharge of salt

No new measures were implemented for 2022/23.

9 Environmental protection and management

9.1 Discharge of noxious aquatic weeds

During 2022/23 irrigation year, there were no known actual or potential discharge of Class 1, 2 or 3 declared aquatic weeds from MI's Area of Operation.

9.2 Discharge of blue-green algae

There was one discharge event that contained a red alert level of blue green algae from MI's area of operation during 2022/23. The event was reported to the Minister's nominated contact officer within 24 hours of receiving the result. The event was:

• 30 January 2023 at POINT 7 ROCUDG – Cudgel Creek downstream of Roaches Escape

ENVIRONMENTAL PROTECTION LICENCE 4651

10 Statement of compliance

MI has fulfilled the compliance requirements as set out in EPL 4651 for 2022/23. A summary of the compliance requirements is cross referenced to this report and listed in **Table 23**.

No non-compliances were recorded and reported on during 2022/23.

Quality assurance and control procedures are in place to ensure data integrity and all compliance obligations are fulfilled. This includes using a NATA accredited laboratory for water sample analysis and contracting an external hydrological service provider to manage and maintain automated monitoring stations at discharge points. Internal Standard Operating Procedures (**SOPs**) for monitoring and reporting are reviewed and updated regularly.

MI has in place a process to receive complaints from members of the public in relation to MI's activities via the business telephone number. Contact information for complaints can be found on MI's website (https://www.mirrigation.com.au/company/contact).

Licence section	Requirement	Compliant	Included in this report	
Administrative Conditions	1	Yes	No, not applicable	
Discharges to Air and Water and Applications to Land	2	Yes	N/A	
Limit Conditions	3	Yes	N/A	
Operating Conditions	4	Yes	N/A	
Maintain a Chemical Contingency Plan	03.1	Yes		
Maintain a Chemical Control Plan	03.5	Yes		
Maintain Pollution Incident Response Management Plan	Required for all EPL holders under the Protection of Environment Operations Act 1997	Yes	No, see: https://www.mirrigation.c om.au/water/water- quality	
Monitoring and Recording Conditions	5	Yes	10. Statement of Compliance	
Monitoring Records	M1	Yes	No - available upon request from EPA	
Requirement to monitor concentration of pollutants discharged	M2	Yes	11. EPL Monitoring and Reporting	
Testing Methods	M3	Yes	No - Internal documents	
Recording of pollution complaints	M4	Yes	No - available upon request from EPA	
Telephone complaints line	M5	Yes	10. Statement of Compliance	
Requirement to monitor volume or mass	M6	Yes	11. EPL Monitoring and Reporting	

Table 23 EPL 4651 monitoring and reporting requirements

Licence section	Requirement	Compliant	Included in this report
Other Monitoring and recording conditions	M7	Yes	9.1. Noxious Weed Management
Annual return documents	R1	Yes	Submitted 28 August 2023
Annual system performance report	R4 Summary R2, R3 & R5	Yes	 a) 3. Reporting on water management b) 11. EPL monitoring and reporting & 11.2 Water quality monitoring c) 11.3. Summary of events d) 12. Proposed changes

11 EPL monitoring and reporting

Under MI's EPL 4651, five locations (**Figure 2**) are licensed to allow water to be discharged outside MI's Area of Operation, with the condition that all flows are recorded, and specified water quality parameters are monitored. These discharge points are listed below:

- POINT 4 LAG Gogeldrie Main Drain at Gooragool Lagoon
- POINT 5 GMSRR Gogeldrie Main Southern Drain River Road
- POINT 6 YMS Yanco Main Southern Drain
- POINT 7 ROCUDG Cudgel Creek Roaches Escape
- POINT 15 MIRFLD Mirrool Creek Floodway Wyvern Station

11.1 System performance

Table 24 presents total diversions into the MIA and total water discharged from the MIA for 2022/23 compared to previous years. In 2022/23 118,046 ML was discharged, an increase of 109,451 ML compared to the previous reporting period of 2021/22.

The volume discharged in 2022/23 is comparable to the volume discharged during the 2016/17 comparison year. This is due to flood events occurring in both 2016/17 and 2022/23 during which large volumes of water were discharged to the Mirrool Creek Floodway (**MIRFLD**) to mitigate floodwaters entering the system from the upper catchment. Diversions are lower in 2022/23 than they were in the 2016/17 comparison year due to consecutive years of above average rainfall in 2021/22 and 2022/23 contributing to lower demand on water delivery.

Year	Diversions (ML)	Discharged (ML)
2022/23	613,614	118,046
2021/22	684,959	8,595
2020/21	880,456	900
2019/20	349,523	127
2016/17	780,083	122,092

Table 24 Total water volumes

11.2 Water quality monitoring

Monthly summaries for each monitoring point are presented in **Table 25** to **Table 29**. Monitoring consisted of thirty-nine sampling events, with two Notification level detections and seven Action level detections.

Diuron was the only chemical detected above licence limits in 2022/23. Chemical detections were found at two of the five licenced sites, Point 4 - LAG, and Point 5 - GMSRR.

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-22	3.3	1	1	25/07/2023 Notification level Diuron (0.304µg/L)
Aug-22	0	0	0	-
Sep-22	0	0	0	-
Oct-22	0	1	0	Due diligence samples taken during flood event
Nov-22	0	1	0	Due diligence samples taken during flood event
Dec-22	757.6	1	0	-
Jan-23	617.2	1	0	-
Feb-23	836.8	0	0	No sample taken. Flows throughout the month did not trigger an alarm.
Mar-23	946.6	1	1	30/03/2023 Notification level Diuron (0.895µg/L)
Apr-23	756.2	0	0	No sample taken. Flows throughout the month did not trigger an alarm.
May-23	31.3	2	0	-
Jun-23	13.8	1	0	-
Total	3,962.8	9	2	

Table 25 Monitoring results for Point 4 - LAG

 Table 26 Monitoring results for Point 5 - GMSRR

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-22	0.6	0	0	-
Aug-22	0.6	0	0	-
Sep-22	0	0	0	-
Oct-22	0	0	0	-
Nov-22	0	0	0	-
Dec-22	201	3	0	-
Jan-23	1.2	3	0	-
Feb-23	10.5	1	1	11/02/2023 Action level Diuron (3.06µg/L)
Mar-23	12.9	6	6	01/03/2023 Action level Diuron (20.3µg/L) 02/03/2023 Action level Diuron (11.8µg/L) 06/03/2023 Action level Diuron (9.97µg/L) 07/03/2023 Action level Diuron (5.97µg/L) 10/03/2023 Action level Diuron (1.7µg/L) 15/03/2023 Action level Diuron (1.85µg/L)
Apr-23	0	0	0	-

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
May-23	1.5	0	0	-
Jun-23	5.6	0	0	No samples taken. Low flow did not trigger an alarm.
Total	233.9	13	7	

 Table 27 Monitoring results for Point 6 - YMS

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-22	0	0	0	-
Aug-22	0	0	0	-
Sep-22	0	0	0	-
Oct-22	0	0	0	-
Nov-22	0	0	0	-
Dec-22	0	0	0	-
Jan-23	0	0	0	-
Feb-23	0	0	0	-
Mar-23	0	0	0	-
Apr-23	0	0	0	-
May-23	0	0	0	-
Jun-23	0	0	0	-
Total	0	0	0	

Table 28 Monitoring results for Point 7 - ROCUDG

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-22	0	0	0	-
Aug-22	0	0	0	-
Sep-22	0	0	0	-
Oct-22	0	0	0	-
Nov-22	0	0	0	-
Dec-22	151	3	0	-
Jan-23	87.6	2	0	-
Feb-23	8.1	1	0	-
Mar-23	1,248	3	0	-
Apr-23	190	1	0	-
May-23	33.6	0	0	No sample taken. Low flows did not trigger an alarm.
Jun-23	14.1	0	0	Sample taken in July 2023.
Total	1,732.3	10	0	

Table 29 Monitoring results for Point 15 – MIRFLD

Month	Discharged (ML)	Sampling events	Detections	Chemical detection details
Jul-22	0	0	0	-
Aug-22	7,459.6	2	0	-
Sep-22	13,053.1	1	0	Due Diligence samples taken during flood event
Oct-22	34,712	1	0	Due Diligence samples taken during flood event
Nov-22	44,340	1	0	Due Diligence samples taken during flood event
Dec-22	10,744	0	0	-
Jan-23	2.8	0	0	Low flow did not trigger an alarm. Rainfall and sudden reduction in demand downstream led to supply water overtopping the structure.
Feb-23	0.1	0	0	-
Mar-23	652.5	1	0	-
Apr-23	1,152.5	1	0	-
May-23	0	0	0	-
Jun-23	0	0	0	-
Total	112,116.6	7	0	

Figure 22 provides a comparison of annual rainfall received, compared to the number of chemical detections and sampling events for the last four years.

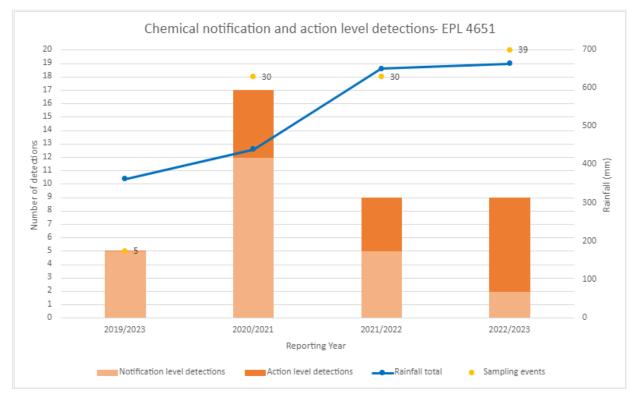


Figure 22 Comparison of irrigation drainage water notification trends

Figure 22 shows a clear trend in improving water quality management by MI and its customers. While the number of sampling events and annual rainfall has increased compared to the previous reporting year, the number of chemical detections has remained consistent with the previous reporting year. All

action level exceedances recorded in 2022/23 occurred during a single exceedance event at GMSRR during February and March 2023, where multiple sample events were triggered by a single source of drainage water. Therefore, there were three separate exceedance events recorded during 2022/23.

Overall, in the 2022/23 financial year Diuron accounted for all reports to the EPA.

MI has provided Chemical Fact Sheets to our customers via our website to raise awareness in the MIA on the risks of chemical use and the need to comply with MI's Drainage Use Rules. Where investigations have been undertaken, direct contact with customers occurs via phone calls, letters, emails and in-field meetings to raise awareness on MI's EPL requirements, Drainage Use Rules and the need for customers to comply with all pesticide legislative requirements, including using chemicals in accordance with their approved labels. A decrease in the percentage detections compared to the number of samples taken in 2022/23 suggests that MI's efforts to raise awareness may be having a positive effect.

11.3 Summary of events

Table 30 contains a summary of all events that have been reported on during 2022/23. No events occurred that triggered notification of environmental harm or a written report to the EPA under the EPL. A total of 9 exceedances were recorded during 2022/23 reporting period.

Table 30	Summary	of events	2022/23
----------	---------	-----------	---------

Year	Notification of environmental harm	Written report (of an event)	Exceedances
2022/23	0	0	9

12 Proposed changes

MI proposed an administrative change to Condition R5.1 to update the EPA contact e-mail address. MI received a 'NOTICE OF VARIATION OF LICENCE No. 4651' in June 2023. MI does not propose any further changes at this time.

Attachment A: Significant events for 2022/23

Murrumbidgee Irrigation notified the minister of four significant events during 2022/23 reporting year. Each significant event details are outlined below in below **Table 31**. Each significant event was notified to the minister using the S91i process.

Date lodged	Reference	Site	Event details	Occurrence	Corrected by	Date closed
5/9/2022	CS0474414	Sturt (17959)	River was running to low for the AFFRA unit, causing incorrect flow rates to be registered		Once the river was refilled, correct flows were recorded	13/9/2022
23/9/22	CS0478032	Narrandera (6944)	Stream gauging found the AFFRA unit to be 20% difference between what was measured and what was being recorded below 200ML/d		Certificate of Validation provided, updated flow index equation to meter unit	23/12/2022
12/1/2023	CS0503689	Narrandera (6944)	AFFRA unit had weed build up causing the sensors to read the flow rate incorrectly.		Weeds were removed, and scheduled inspections occurred weekly	31/5/2023
31/1/2023	CS0507800	Sturt (17959)	When gauged the AFFRA unit was found to be 8.9% out		Certificate of Validation provided, updated flow index equation to meter unit	17/3/2023

 Table 31 Summary of significant events 2022/23

Attachment B: VENTIA flow, EC, and salt load monitoring financial year report

MURRUMBIDGEE IRRIGATION - FLOW, EC & SALT LOAD MONITORING FINANCIAL YEAR 2022/2023 REPORT

Issue

Issued Date 11/09/2023

1.2

Prepared	Ping Yao (Environmental Scientist)
Reviewed	Matthew Bamford (Area Manager)
Approved	Matthew Bamford (Area Manager)

Proprietary Notice:

This document contains confidential information. In consideration of receipt of this document, the recipient agrees to maintain such information in confidence and to not disclose this information to any person outside of Ventia without the written permission of the author.

EXTERNAL CONFIDENTIAL

DOCUMENT CONTROL & DISTRIBUTION LIST

Report No.

RPT0619

Contact for Enquiries and Proposed Changes

If you have any questions regarding this document, please contact:

Name	Matthew Bamford
Designation	Area Manager
Phone	03 5824 3122
Email	Matthew.Bamford@ventia.com

Document Control

Amendment	Date	Page	Description	Authorised
0.1	11/07/2023	-	Draft	Matthew Bamford
1.0	31/07/2023		For Client to Review	Matthew Bamford
1.1	31/08/2023		Final	Matthew Bamford
1.2	11/09/2023		Revision	Matthew Bamford

Notification / Distribution List

Section/Group	Contact
Murrumbidgee Irrigation Limited	Lindsay Golsby-Smith
Murrumbidgee Irrigation Limited	Paul Blumer
Murrumbidgee Irrigation Limited	Sam Yenamandra
Murrumbidgee Irrigation Limited	Cindy McDonald
Murrumbidgee Irrigation Limited	Chris Palmer
Murrumbidgee Irrigation Limited	Jim Hocking
Ventia Utility Services	Matthew Bamford

The above notification list is a minimum controlled distribution and it is the responsibility of the persons receiving the notification to further notify other Ventia personnel within their area if required.

TABLE OF CONTENTS

1.0	Introduction1
2.0	Annual Flow Summaries2
	2.1 Compliance Sites2
	2.2 Offtake Sites
3.0	Annual Salt Load Summaries8
	3.1 Compliance Sites8
	3.2 Offtake Sites12
4.0	Annual EC Summaries14
	4.1 Compliance Sites14
	4.2 Offtake Sites
5.0	Annual Site Summaries for sites affected by back-up20
	5.1 Compliance Sites:
	5.2 Offtake Sites:
6.0	EWA's 2022/2023
7.0	410127 MAIN CANAL @ NARRANDERA REGULATOR23
	7.1 Measurement Summary23
8.0	410129 STURT CANAL @ OFFTAKE27
	8.1 Measurement Summary27

1.0 Introduction

Ventia Utility Services is contracted by Murrumbidgee Irrigation (MI) to conduct continuous level/flow and salinity monitoring at a range of locations distributed across their area of operations.

This report presents monthly statistics and annual summaries of total flow and salt loads derived from the monitoring at drain sites and supply sites for the 2022/2023 financial year. Site 410083 contains no flow or salt load data as the rating table was suspended as of the 01/06/2010 to present due to the installation of new gates.

This report contains information relating to Murrumbidgee Irrigation Compliance sites, 410083, 41010005, 41010921 and 41010940. Also reported on are the two offtake sites being 410127 and 410129. An annual site summary can be found in this report on all sites maintained by Ventia field staff.

All data reported is extracted from the Ventia Hydstra software archive to an accuracy of three (3) significant figures.

A data extraction process called HYTAB is used when extracting the data. HYTAB utilises a configuration file provided by MI to format the data. This file stipulates reporting to four (4) significant figures. Using four significant figures implies an unrealistic level of accuracy for the data collection processes undertaken. Ventia data reporting standards recommend a maximum of three (3) significant figures.

2.0 Annual Flow Summaries

2.1 Compliance Sites

Site Variable Year	410083 141.00 2022/23			NCO MAIN SOUTHERN DRAIN AT OUTFALL (YMS) ream Discharge (Ml/d) in megalitres/day, Available for release				Site Year	410083 2022/23	
Day	Jul	Aug	Sep Oc	ct Nov	Dec	Jan Feb	Mar	Apr	Мау	Jun Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	[]S []S []S []S []S []S []S []S	<pre>[]S []S []S []S []S []S []S []S</pre>	[]S [[]S]S []S]S []S <td< td=""><td><pre>[]\$ []\$ []\$ []\$ []\$ []\$ []\$ []\$</pre></td><td>[]S []S [] []S []S []</td><td>S []S S [</td><td><pre>[]S []S []S []S []S []S []S []S</pre></td><td><pre>[]S []S []S []S []S []S []S []S</pre></td><td>[]S 1 []S 2 []S 3 []S 3 []S 4 []S 5 []S 5 []S 6 []S 7 []S 10 []S 10 []S 12 []S 13 []S 14 []S 15 []S 16 []S 19 []S 20 []S 21 []S 22 []S 23 []S 24 []S 28 []S 29 []S 30 31 </td></td<>	<pre>[]\$ []\$ []\$ []\$ []\$ []\$ []\$ []\$</pre>	[]S []S [] []S []S []	S []S S [<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	[]S 1 []S 2 []S 3 []S 3 []S 4 []S 5 []S 5 []S 6 []S 7 []S 10 []S 10 []S 12 []S 13 []S 14 []S 15 []S 16 []S 19 []S 20 []S 21 []S 22 []S 23 []S 24 []S 28 []S 29 []S 30 31
	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	All reco]S []S]S []S	[]S []S []S ces	and reliable	S []S S []S R	[]S []S []S []S []S []S []S []S		<pre>[]S []S</pre>
Annual Mean [Ann. Median [Annual Total [Max: Daily Mean [Instant [Monthly []S]S]S imum Mir]S []S []S []S [nimum []S []S []S	except v S H All Tota	where the follo Rating table su als are in mega refer to perio	owing tags a uspended ulitres	are used		rom 1/06/2010	To Present	Reliable

The rating table for this site was suspended by Ventia on the 01/06/2010 as new gates were installed by Murrumbidgee Irrigation. Ventia does not currently supply flow data for this site.

Site Variable Year	4101000 141.00 2022/23					OUTFALL (RO in megalit:	Site Year		10005 22/23				
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Mean Mean Median Max.Daily	Jul []B []	Aug 0.0R 0	Sep []B	Oct []] []] []] []] []] []] []] []	3 [] 3 []	B []B B 21.2? B 13.9? B 11.4? B 9.1? B 7.1? B 7.1? B 7.1? B 2.0? B 1.6? B 2.8? B 2.3? B 2.5? B 2.3? B 2.4? B 2.2? B 2.2? B 2.6? B 3.0? B 3.7? B 4.6? B 3.0? B 3.4? C 1.2? C 1.2? C 1.2? C 2.3? C 3.3] C 2.3? C 2	Jan 4.4? 2.8? 4.3? 4.9? 4.4? 1.8? 1.7R 1.8R 1.9? 2.4? 3.1? 3.2? 8.8? 11.1? 10.4? []B []B []B []B []B []B []B []B	Feb 6.2 1.7 0.2R 0.0	Mar []T 55.3 79.2N 83.8N 84.7N 89.3N 93.8N 95.2N 96.8N 92.1N 70.0N 36.2 16.4 8.9 6.4 4.5 2.8 1.7 1.8 7.6 21.1 26.6 37.7 39.8 36.3 29.4 22.8 17.6 23.9 32.5 34.1 [41.6] [33.3] [96.8]	Apr 29.9 22.8 16.6 11.4 6.8 4.0 3.2 2.7 2.1 1.9 1.7 2.0 3.3 7.3 9.9 14.4 13.0 8.8 6.5 5.1 3.3 2.3 1.8 1.7 1.5 1.3 1.2 1.1 1.0 6.3 3.3 29.9	May 1.0 1.1 1.1 1.0 0.9 0.8 0.7 0.7 0.9 1.1 1.4 1.6 1.6 1.5 1.4 1.3 1.2 1.2 1.2 1.3 1.2 1.2 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	Jun 0.6 0.5 0.4 0.3R 0.4R 0.3R 0.6 0.5 0.4 0.3R 0.2R 0.2R 0.1R 0.2R 0.5R 0.2R 0.5R 0.2R	Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 24 25 26 27 28 20 31
Min.Daily Inst.Max Inst.Min Total Max.Water Leve	[0.0] [0.0] [0.00] [0.000] [0.257] [0.186]	[0.0] [0.0] [0.0] [0.000] [0.227] [0.184]	[]B []B []B []B []B []B		B [] B [] B [] B [] B []	B [1.2] B [41.4]	[0.5] [14.1] [0.3] [87.56] [0.420] [0.312]	[0.2] [0.0] [8.4] [0.0] [8.061][[0.395] [0.037]	[1.7] [98.8] [0.6]	1.0 32.1 0.9 190.0 0.478 0.334	0.7 1.7 0.6 33.61 0.346 0.328	0.0R 7.7R 0.0R 14.08 R 0.391R 0.268R	

Summaries	Notes	Notes							
	All recorded data is continuous and reliable except where the following tags are used	Table	From	То	Max.Disch Reliable				
Annual Mean [8.4]	? Irregular data use with caution	21	01/07/2019	Present	74.5				
Ann. Median [1.6]	B Backed-up stage								
Annual Total [1733]	N Rating Extrapol. within x1.5 max flow								
	R Rating table extrapolated								
Maximum Minimum	T Probe out of water/below instrument th								
Daily Mean [96.8] [0.0]	All Totals are in megalitres								
Instant [98.8] [0.0]	Figures refer to period ending 2400 hours.								
Monthly [1248] [0.000]									

41010005 experienced its highest flows in March 2023.

Site Variabl Year	41010 141.0 2022/	0		GOGELDRIE MAIN SOUTHERN DRAIN AT RIVER ROAD (GMSRR) Stream Discharge (Ml/d) in megalitres/day, Available for release							Site Year		41010921 2022/23			
Day	Jul	Aug	Se	ep	00	ct	No	v	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1	0.0	0.0	ſ]B	ſ] B	ſ]B	[]B	[]*	0.1	0.9	0.0	0.0	0.9	1
2	0.1	0.1	[] B	[]B	[] B	[]B	[]*	0.0	0.3	0.0	0.0	0.8	2
3	0.0	0.4	[] B	1]B	ſ] B	[]B	[]*		0.2	0.0	0.0	0.7	3
4	0.0	0.1	ſ]B	ſ]B	ſ]B	165 R	[]*		0.3	0.0	0.0	0.5	4
5	0.0	0.0	ſ] B	ſ]B	ſ] B	23.0R	[]*		0.2	0.0	0.0	0.4	5
6	0.0	0.0	ſ]B	ſ] B	ſ]B	3.2?	[]*		0.8	0.0	0.0	0.5	6
7	0.0	0.0	ſ]B	ſ]B	ſ]B	2.1?	[]*		0.7	0.0	0.0	0.5	7
8	0.0	[]B	Г]B	ſ]B	ſ]B	1.1?	[]*	0.6	0.6	0.0	0.0	0.5	8
9	0.0	[]B	[]B	ſ]B	r r]B	1.0?	[]*		0.9	0.0	0.0	0.4	9
10	0.0	[]B	L F]B	r r]B	ſ]B	2.9?	[]*		0.5	0.0	0.0	0.3	10
10	0.0	[]B	L L]B	r] B	L T]B	1.9?	[]*	0.7	0.4	0.0	0.0	0.1	10
12	0.0	[]B	L]B	L r] B	L r]B	0.8?	[]*		0.4	0.0	0.0	0.0	12
13	0.0	[]B	ſ]B	L]B	L]B	[]*	[]*		0.8	0.0	0.0	0.0	13
13	0.0	[]B	L]B	L]B	L]B	[]*	[]*		0.9	0.0	0.0	0.0	14
15			L		L		L]B		[]*					0.0	14
	0.0	[]B []B	L [] B] B	L] B] B	L] B	[]* []*	[]*		1.1	0.0	0.0		
16	0.0		L		L		L				0.3	1.0	0.0	0.0	0.0	16
17	0.0	[]B	L]B	L] B	L] B	[]*	[]*		0.7	0.0	0.0	0.0	17
18	0.0	[]B	L]B	L] B	L] B	[]*	[]*		0.6	0.0	0.0	0.0	18
19	0.0	[]B	[]B	l] B	ļ]B	[]*	[]*		0.4	0.0	0.0	0.0	19
20	0.0	[]B	L]B	l]B	L]B	[]*	[]*	0.8	0.2	0.0	0.0	0.0	20
21	0.0	[]B	L] B	l] B	l]B	[]*	[]*	[] M	0.1	0.0	0.0	0.0	21
22	0.0	[]B	[] B	[] B	[] B	[]*	[]*	[]M	0.0	0.0	0.0	0.0	22
23	0.0	[]B	[] B	[] B	[] B	[]*	[]*		0.1	0.0	0.1	0.0	23
24	0.1	[]B	[]B	[] B	[] B	[]*	[]*	0.4	0.1	0.0	0.2	0.0	24
25	0.0	[]B	[]B	[] B	[]B	[]*	[]*		0.0	0.0	0.0	0.0	25
26	0.0	[]B	[]B	[] B	[]B	[]*	0.1	0.0	0.0	0.0	0.0	0.0	26
27	0.0	[]B	[]B	[]B	[]B	[]*	0.0	0.0	0.0	0.0	0.0	0.0	27
28	0.0	[]B	[]B	[]B	[] B	[]*	0.0	0.5	0.0	0.0	0.0	0.0	28
29	0.1	[]B	[]B	[]B	[] B	[]*	0.0		0.4	0.0	0.0	0.0	29
30	0.1	[]B	[]B	[]B	[]B	[]*	0.4		0.3	0.0	0.4	0.0	30
31	0.0	[]B			[]B			[]*	0.7		0.1		0.8		31
Mean	0.0	[0.1]	[]B	[] B	[]B	[22.3]	[0.2]	[0.4]	0.4	0.0	0.0	0.2	
Median	0.0	[0.0]	ſ]B	ſ]B	ſ]B	[2.1]	[0.1]	[0.3]	0.4	0.0	0.0	0.0	
Max.Daily	0.1	[0.4]	ſ]в	ſ]B	ſ]B	[165]	[0.7]	[1.2]	1.1	0.0	0.8	0.9	
Min.Daily	0.0	[0.0]	[]B	ſ]B	ſ]B	[0.8]	[0.0]	[0.0]	0.0	0.0	0.0	0.0	
Inst.Max	2.2	[4.9]	ſ]B	ſ]B	ſ]B	[284]	[2.6]	[3.4]	4.2	0.1	0.9	0.9	
Inst.Min	0.0	[0.0]	ſ]B	ſ]B	ſ]B	[0.0]	[0.0]		0.0	0.0	0.0	0.0	
Total	0.561	[0.623]	ſ]B	ſ]B	ſ	-			[10.48]	12.93	0.030	1.484	5.589	
Max.Water Leve	0.302	[0.376]	Г]B	ſ]B	ſ]B	-		[0.340]	0.361	0.179	0.241	0.242	
Min.Water Leve	0.000	[0.000]	[]B	[]B	[-	• •		[-0.067]	0.121	0.039	0.045	0.037	
~									-			-		1		
	mmaries											ł	Rating Tab	Dies	Ma	Diach
									owing tag	is and re		Table		ТО		Disch

	All recorded data is continuous and reliable								
	except where the following tags are used	Table	From	То	Reliable				
Annual Mean [1.2]	* Debris Effecting Sensor	15	30/05/2018	Present	41.8				
Ann. Median [0.0]	? Irregular data use with caution								
Annual Total [233.9]	B Backed-up stage								
	M Equipment malfunction								
Maximum Minimum	R Rating table extrapolated								
Daily Mean [165] [0.0]	All Totals are in megalitres								
Instant [284] [0.0]	Figures refer to period ending 2400 hours.								
Monthly [201.0] [0.030]									

41010921 experienced its highest flows in December 2022.

Site Variable Year	410109 141.00 2022/2)		LAGOON DRAIN @ GOORAGOOL LAGOON (LAG) Stream Discharge (Ml/d) in megalitres/day, Available for release					Site Year		41010940 2022/23					
Day	Jul	Aug		Sep	Oct	5	N	VC	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1	[]B	[]]	В	[]B	[]B	[]B	[]B	22.1	18.9	42.0R	33.5N	3.2	0.9	1
2	[]B	[]]		[]B	[] B	[]B	[]B	21.0	11.3	41.0R	22.7N	2.1	0.6	2
3	0.0	[]]		[]B	[] B	[]B	[]B	18.5	7.8	44.5R	42.5R	1.0	0.7	3
4	0.0	[]]		[]B	[] B	1]B	[]B	16.2	9.2	44.2R	46.4R	0.7	0.4	4
5	0.0	[]]		[]B	ſ]B	ſ]B	12.3	17.1	8.6	31.8N	50.3R	0.5	1.8	5
6	0.0	[]]		[]B	ſ]B	ſ]B	4.6	23.0	8.3	37.6R	44.4R	0.5	1.0	6
7	0.0	[]]		[]B	ſ]B	ſ]B	9.1	22.2	43.2R	28.7	43.1N	0.4	0.7	7
8	0.0	[]]		[]B	ſ]B	ſ]B	4.4	20.2	57.9R	27.4	42.6N	0.3	1.2	8
9	0.0	[]]		[]B	ſ]B	ſ]B	25.3N	18.8	51.8R	28.9	37.3N	0.2	1.4	9
10	0.0	[]]		[]B	ſ]B	ſ]B	38.9N	17.1	45.1R	28.8	41.6R	0.1	0.8	10
11	0.0	[]]		[]B	r]B	ſ]B	45.4R	18.9	40.7N	27.0	44.0R	0.1	0.5	11
12	0.0	[]]		[]B	[]B	ſ]B	35.4R	23.6	37.0N	30.1	39.5R	0.8	0.4	12
13	0.0	[]]		[]B	ſ] B	L r]B	32.0N	23.0 32.3N	35.8N	30.9	23.1	1.1	0.4	13
14	0.0	[]]		[]B	ſ] B	L r]B	32.01	15.5	34.6N	29.2N	19.9	0.8	0.2	14
					ſ	-	L	-							0.2	14
15 16	0.0 0.0	[]]		[]B []B	-] B] B	L]B]B	33.4N 34.0N	16.1 14.3	33.4N 32.3	41.3R 37.8R	18.0 26.5N	0.8 0.7	0.2	16
					[L	-								
17	0.0	[]]		[]B	[]B	l]B	33.7N	12.4	31.1	33.9N	28.6	0.6	0.1	17
18	0.0	[]]		[]B	L]B	L]B	34.8N	11.9	30.0	36.5N	25.6	0.5	0.1	18
19	0.0	[]]		[]B	L]B	l]B	42.3N	27.4N	29.0	32.0	22.0	0.4	0.1	19
20	0.0	[]]		[]B	L]B	l] B	38.ON	16.6	40.4R	30.1N	20.9	0.4	0.2	20
21	0.0	[]]		[]B	[]B	[] B	35.0N	12.2	34.5N	33.4N	18.5	0.4	0.2	21
22	0.0	[]]		[]B	[] B	[] B	43.6R	9.7	26.3	28.1	15.4	0.4	0.2	22
23	0.0	[]]		[]B	[] B	[]B	49.7R	27.0	22.5	26.9	11.2	0.3	0.2	23
24	1.3	[]]		[]B	[] B	[]B	25.5	26.5	27.7N	27.9	8.2	0.3	0.2	24
25	0.9	[]]		[]B	[] B	[] B	20.6	30.5N	35.4N	26.8	6.8	0.5	0.1	25
26	0.5	[]]		[]B	[] B	[]B	20.2	12.1	27.9	21.9	6.2	1.7	0.1	26
27	0.3	[]]	В	[]B	[] B	[] B	18.8	15.5	25.7	21.0	5.6	3.6	0.1	27
28	0.2	[]]	В	[]B	[] B	[] B	17.4	27.6	30.4N	[]M	4.6	1.3	0.3	28
29	0.1	[]]		[]B	[] B	[]B	18.6	16.1		[] M	3.8	2.8	0.5	29
30	0.0	[]]		[]B	[]B	[]B	25.8	31.9R		37.9R	3.4	2.2	0.3	30
31	[]B	[]]	В		[]B			26.6	22.6		39.2N		2.5		31
Mean	[0.1]	[]]		[]B	[]B	[] B	[28.1]	19.9R	29.9R	[32.6]	25.2R	1.0	0.5	
Median	[0.0]	[]]		[]B	[]B	[]B	[32.0]	18.8R	30.8R	[30.9]	22.9R	0.6	0.3	
Max.Daily	[1.3]	[]]		[]B	[] B	[] B	[49.7]	32.3R	57.9R	[44.5]	50.3R	3.6	1.8	
Min.Daily	[0.0]	[]]	В	[]B	[] B	[] B	[4.4]	9.7R	7.8R	[21.0]	3.4R	0.1	0.1	
Inst.Max	[2.4]	[]]	В	[]B	[] B	[] B	[67.7]	46.7R	72.1R	[56.4]	55.6R	5.9	2.5	
Inst.Min	[0.0]	[]]		[]B	[]B	[]B	[3.1]	7.9R	6.9R	[20.4]	3.0R	0.0	0.0	
Total	[3.251]	[]]	В	[]B	[]B	[]B[757.6]	617.2 R	836.8 R[946.6]	756.2 R	31.30	13.83	
	[0.515]	[]]	В	[]B	[] B	[]B	[1.055]	0.929R	1.080R	[0.989]	0.984R	0.578	0.516	
	[0.331]	[]]	З	[]B]] B	[] B	[0.532]	0.608R	0.594R	[0.740]	0.529R	0.382	0.383	

Summaries		Notes	Rating Tabl			
		All recorded data is continuous and reliable except where the following tags are used	Table	From	То	Max.Disch Reliable
Annual Mean [16.9]		B Backed-up stage	25	01/07/2019	Present	33.5
Ann. Median [16.2]		M Equipment malfunction				
Annual Total [3963]		N Rating Extrapol. within x1.5 max flow R Rating table extrapolated				
Maximum	Minimum	All Totals are in megalitres				
Daily Mean [57.9] Instant [72.1] Monthly [946.6]	[0.0] [0.0] [3.251]	Figures refer to period ending 2400 hours.				

41010940 experienced its highest flows in March 2023.

2.2 Offtake Sites

bay Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Day 1 22.3 v 22.4 v 4407 140 71.1 2260 4060 1430 3240 v 9.364 k 5.34 467 v 1 3 12.1 v 22.9 8.0 CV 24.5 333 205 2200 3750 2300 3360 v 334 k 5.33 467 v 1 4 13.1 v 22.0 0 0.66 170 0 170 175 6 2300 3300 v 334 k 838 264 v 46 5 5.9 v 0.00 246 0.0 164 2850 3700 3700 3300 v 787 k 481 77 v 78 5 57.9 v 79 57.9 v 79 79 79 79 79 79 79 79 79 79 79 70 70 70 77 8 192 v 710 7 70 77 70 8 192 v 70 77 70 8 120 v 70 77 70 70 77 70 70 77 77 70 70 77 77 70 70 77 77 70 70 77 77 70 70 77 77 70 70 77 77 70 70 77 77 70	Site Variab Year	410127 Dle 141.00 2022/2					REGULATOP	R tres/day,	Availabl	le :	for rel	lea	se		Sit Yea			10127 22/23
2 80.0V 264 281 445 118 2300 3350 120 3280 V 364 K 538 487 V 2 4 39.5V 113 264 170 105 2970 3800 2950 3355 V 328 K 568 560 737 V 3 5 136 V 0.0 246 0.0 87.4 2800 3350 V 328 V 534 K 588 266 V 6 77.7V 8 77.7V 77.7V 8 77.7V <t< td=""><td>Day</td><td>Jul</td><td>Aug</td><td>Sep</td><td>Oct</td><td>Nov</td><td>Dec</td><td>Jan</td><td>Feb</td><td></td><td>Mar</td><td></td><td>Apr</td><td></td><td>Мау</td><td></td><td>Jun</td><td>Day</td></t<>	Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb		Mar		Apr		Мау		Jun	Day
27 299 V 269 28.6 0.0 1510 3340 3700 3820 V 1150 V 573 968 V 0.0 27 28 327 V 271 64.7 27.9 1930 3700 3490 3440 V 746 V 573 968 V 0.0 28 30 362 V 226 92.5 52.6 1770 3550 2020 348 K 686 588 V 0.0 28 31 388 V 125 0.0 3800 1740 434 K 830 V 166 V 30 Mean 205 V 143 124 68.0 559 3020 3920 3650 V 2400 K 439 K 674 V 186 V 30 Mean 205 V 143 124 68.0 59 3020 3920 3650 V 2400 K 430 K 195 X	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	213 V 80.0V 13.1V 39.5V 136 V 9.5V 7.7V 159 V 192 V 166 V 182 V 243 V 214 V 183 V 180 V 208 V 237 V 247 V 247 V 249 V 312 V 249 V 312 V 282 V 217 V 87.1V 243 V 302 V	264 229 113 0.6 0.0 98.5 72.5 17.7 23.3 159 165 110 35.5 211 137 5.4 394 46.8 0.0 435 90.7 328 12.9 154	$\begin{array}{c} 407\\ 281\\ 87.5\\ 264\\ 106\\ 246\\ 109\\ 141\\ 56.4\\ 130\\ 131\\ 61.9\\ 73.5\\ 71.9\\ 77.4\\ 67.3\\ 115\\ 81.8\\ 105\\ 142\\ 400\\ 35.9\\ 71.2\\ 53.8\\ 91.3 \end{array}$	140 445 353 170 0.0 0.0 20.8 78.7 47.0 81.5 131 94.9 40.4 11.4 13.0 13.0 13.0 13.0 13.0 13.0 28.2 35.6	71.1 118 205 105 87.6 96.4 142 168 284 544 615 685 397 57.7 143 152 263 420 353 405 371 556 624 1210 925	2290 2350 2270 2970 3140 2890 2620 2850 2600 3070 2510 1980 2230 2540 2720 3520 3520 3520 3480 3250 3250 3220 3650 3110 3250 3470	4060 3950 3750 3800 3910 3760 4020 4390 3870 4390 4170 3960 4250 4470 4960 5190 4560 4740 4560 4740 4380 4240 3960 3150 3600 3520	1490 1910 2390 2750 3090 3100 3370 3630 3670 3320 3760 4650 4040 3750 4220 4080 4630 4300 4630 4300 4640 3770 4080 3650 3610 3920	V V	3470 3280 3360 3350 3230 2780 3130 3000 2830 2870 3530 2990 2690 3170 3070 3250 3340 3090 2900 1810 1280 1340 1190 1110	V V V V V V V V V V V V V V V V V V V	336 364 335 492 528 534 787 467 609 450 479 503 317 335 362 346 195 336 266 342 396 362 471 390 406	******	534 538 560 533 653 588 476 460 342 441 545 461 652 709 577 562 739 754 617 689 936 454 628 1180 834	V	647 V 487 V 573 V 386 V 264 V 54.3V 277 V 177 V 213 V 325 V 150 V 204 V 119 V 165 V 192 V 186 V 119 V 145 V 148 V 293 V 114 V 0.0 0.0 0.0	1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 14 15 16 7 8 9 20 21 22 3 24 25
Median 214 V 117 90.7 35.6 384 3070 3960 3760 V 2900 K 410 K 617 V 157 V Max.Daily 388 V 435 407 445 1930 3890 5190 4700 V 3820 K 787 K 1250 V 647 V Min.Daily 7.7V 0.0 28.6 0.0 577 1980 1740 1490 V 348 K 1820 V 132 V 0.0V Inst.Max 919 V 600 757 776 2430 5060 5840 6490 V 4360 K 1110 K 1740 V 922 V 0.0V Total 6367V 4418 3735 2107 16780 93600 121400 102100V 75.9K 18.5K 199 V 0.0V Max.Discharge 919.274V 690.081 757.424 776.148 2432.123 5057.760 5837.875 6484	27 28 29 30	299 V 327 V 312 V 362 V	269 271 42.5 226	28.6 64.7 53.4	0.0 27.9 63.7 52.6	1510 1930 1300	3340 3700 3780 3550	3700 3490 3790 2020	3820	V	1150 746 892 348	V V K	579 657 414		968 894 887 588	V V V V	0.0 0.0 0.0	27 28 29 30
Annual Mean 1270 K All recorded data is continuous and reliable except where the following tags are used Ann. Median 414 K V Operational Data Annual Total 464700K All Totals are in megalitres Figures refer to period ending 600 hours. Maximum Minimum Daily Mean 5190 K 0.0K Instant 6490 K 0.0K	Median Max.Daily Min.Daily Inst.Max Inst.Min Total Max.Discharge	214 V 388 V 7.7V 919 V 0.0V 6367V 919.274V	117 435 0.0 690 0.0 4418 690.081	90.7 407 28.6 757 0.0 3735 757.424	35.6 445 0.0 776 0.0 2107 776.148	384 1930 57.7 2430 0.0 16780 2432.123	3070 3890 1980 5060 87.0 93600 5057.760	3960 5190 1740 5840 843 121400 5837.875	3760 4700 1490 6490 1120 102100 6486.403	V V V V 0V 3V43	2900 3820 348 4360 75.9 74550 360.668	K K K 9K 0K 8K1	410 787 195 1110 18. 1317 111.70	K K K 5K 0K 94K1	617 1250 342 1740 199 2088 741.39	V V V V 0V 5V	157 V 647 V 922 V 0.0V 5565V 921.990V	
410127 experienced its highest flows in January 2023	- Annual Mean Annual Total Daily Mean Instant	1270 K 414 K 464700K Maximum M 5190 K 6490 K	0.0K 0.0K	Al ex K V Al	l recorde cept wher Minc Oper l Totals gures ref	d data is re the fol or editing rational I are in me fer to per	s continuo llowing ta Data egalitres riod endir	ous and reags are us	eliable sed purs.									

410127 experienced its highest flows in January 2023.

2 3 4 5 6 7 8 9 10 11 12 13 14	Jul 315 V 21.4V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Aug 283 V 136 V 19.2V 9.1V 13.5V 80.8V 139 V 17.6V 142 V	Sep 0.6 74.5 184 110 68.9 71.8 0.1 0.3	Oct 3.3V 6.2V 3.5V 178 V 43.6V 6.4V	Nov 40.3 13.0 31.3 19.9	3V 0V	Dec 762 839		Jan		Feb		Mar	Apr	Мау	Jun	Day
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	21.4V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	136 V 19.2V 9.1V 13.5V 80.8V 139 V 17.6V 142 V	74.5 184 110 68.9 71.8 0.1	6.2V 3.5V 178 V 43.6V	13.0 31.3	0V		v									
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	19.2V 9.1V 13.5V 80.8V 139 V 17.6V 142 V	184 110 68.9 71.8 0.1	3.5V 178 V 43.6V	31.3		020	n	1220	Κ	428		1470 V	14.2K	2.1K	447 V	1
4 5 6 7 8 9 10 11 12 13 14 15 16 17	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.1V 13.5V 80.8V 139 V 17.6V 142 V	110 68.9 71.8 0.1	178 V 43.6V		277	039	K	1180	K	484		1300 V	16.8K	7.0K	471 V	2
5 6 7 8 9 10 11 12 13 14 15 16 17	0.0 0.0 0.0 0.0 0.0 0.0 0.0	13.5V 80.8V 139 V 17.6V 142 V	68.9 71.8 0.1	43.6V	19.5	ЗV	896	K	1120	K	658		1130 V	0.8K	8.8K	436 V	3
6 7 8 9 10 11 12 13 14 15 16 17	0.0 0.0 0.0 0.0 0.0 0.0	80.8V 139 V 17.6V 142 V	71.8 0.1			5V	1040	Κ	1010	Κ	680		1010 V	1.6K	13.9K	220 V	4
7 8 9 10 11 12 13 14 15 16 17	0.0 0.0 0.0 0.0 0.0	139 V 17.6V 142 V	0.1	6 417	2.4	4V	1310	K	891	K	821		1100 V	1.4K	6.6K	256 V	5
8 9 10 11 12 13 14 15 16 17	0.0 0.0 0.0 0.0	17.6V 142 V			7.4		1220	K	1150	K	1010		932 V		44.6K	280 V	6
9 10 11 12 13 14 15 16 17	0.0 0.0 0.0	142 V	0.3	14.5V	24.2	2V	1230	K	1020	K	1270		902 V	0.7K	227 K	184 V	7
10 11 12 13 14 15 16 17	0.0			17.7V	1.0	6V	1330	K	1100	K	1200		828 V	15.8K	253 K	146 V	8
11 12 13 14 15 16 17	0.0		0.0	7.1V	82.	6V	1190	K	1200	K	1240		964 V	20.7K	199 K	132 V	9
12 13 14 15 : 16 17		25.4V	0.0	17.0V	118	V	1010	K	1410	K	1360		1110 V	5.3K	214 K	194 V	10
13 14 15 : 16 17	0.0	72.0V	0.0	4.1V	114	V	962		1570	Κ	1360		1040 V	11.8K	113 K	2.7V	11
14 15 : 16 17		7.2V	0.0	10.6V	85.8	8V	997	K	1250	K	1470		900 V	2.9K	193 K	0.0	12
15 : 16 17	0.0	5.4V	0.0	13.7V	12.8	8V	836	K	1690	K	1630		1100 V	11.2K	161 K	0.0	13
16 17	28.6V	15.1V	0.0	37.6V	30.3	3V	906	K	1780	K	1480		910 V	5.7K	134 K	0.0	14
17	155 V	24.8V	0.0	30.2V	37.	9V	756	Κ	1720	K	1160		976 V	2.3K	175 K	0.0	15
	77.1V	6.2V	0.0	1.7V	22.3	3V	854	K	1950	K	1180		869 V	10.5K	206 K	0.0	16
18	0.0	6.0V	0.0	5.8V	27.	9V	1050	Κ	1690	K	1270		713 V	10.6K	148 K	0.0	17
ΤO	0.0	1.4V	0.0	0.2V	136	V	1340	K	1510	K	1010		914 V	0.0K	14.2K	0.0	18
19	0.0	7.5V	0.0	1.4V	227	V	1240	K	1190	K	1330		1050 V	75.5K	375 K	0.0	19
20	0.0	13.1V	0.0	1.9V	196	V	1370	Κ	969	Κ	1320		1040 V	5.8K	352 K	0.0	20
21	0.0	2.0V	81.8	3.4V	294	V	1530	Κ	997	Κ	1230		679 V	4.2K	352 K	0.0	21
22	0.0	0.0	0.0	12.1V	241	V	1440	Κ	893	K	1280		505 V	2.9K	295 K	0.0	22
23	0.0	17.0V	0.0	58.1V	246	V	1140	Κ	890	Κ		V	467 V		304 K	0.0	23
24	0.0	10.5V	0.0	35.9V	225	Κ	791	Κ	933	Κ		V	433 V	6.3K	251 K	0.0	24
25	0.0	14.4V	0.0	40.7V	216	Κ	1150	Κ	920	Κ		V	370 V		471 V	0.0	25
26	94.8V	5.3	0.0	32.8V	281	Κ	1030	Κ	1040	K		V	385 V		482 V	0.0	26
27	23.7V	0.5	0.0	23.3V	322	Κ	1120	K	1060			V	278 V		397 V	0.0	27
28	9.4V	7.0	0.0	32.9V	415		1310	Κ	1220		1060	V	198 V		419 V	0.0	28
	419 V	10.1	0.0	28.0V	484	K	1370	Κ	1280				166 V		445 V	0.0	29
	632 V	26.2	1.4V	13.4V	567	K	1270	Κ	764				41.8K		355 V	0.0	30
31	661 V	27.4		5.3V			1340	K	384				20.5K		505 V		31
Mean	78.6V	36.9V	19.8V	22.3V	151	K	1120	K	1190	K		V	768 K		230 K	92.3V	
Median	0.0V	13.5V	0.0V	13.4V	100		1140	Κ	1150	Κ		V	902 K		214 K	0.0V	
-	661 V	283 V	184 V	178 V			1530	K	1950	K	1630	V	1470 K		505 K	471 V	
in.Daily	0.0V	0.0V	0.0V	0.2V	1.0		756	Κ	384	Κ		V	20.5K		2.1K	0.0V	
	910 V	2410 V	305 V	1860 V	791			K		K		V	1790 K		874 K		
Inst.Min	0.0V	0.0V	0.0V	0.0V	0.0			ΟK		ΟK	338		0.0K		0.0K	0.0V	
Total	2436V	1145V	594V	690V	4523		3462		3699		3175		23800K		7123K	2769V	
ischarge 190	6.273V24			860.877V 0.000V	791.448	8K2	034.29	0K2	100 00	0 7 7 7							
ischarge (V000.0	0.000V	0.000V		0.000	-	0.00				899.09 337.73		792.560K 0.000K		874.336K1 0.000K	006.583V. 0.000V	

	Summaries		Notes
			All recorded data is continuous and reliable except where the following tags are used
Annual Mean	402 K		K Minor editing
Ann. Median	84.3K		V Operational Data
Annual Total	146800K		All Totals are in megalitres
			Figures refer to period ending 600 hours.
	Maximum	Minimum	
Daily Mean	1950 K	0.0K	
Instant	2480 K	0.0K	
	2 6 0 0 0 7	2027	

393K

410129 experienced its highest flows in January 2023.

Monthly 36990K

3.0 Annual Salt Load Summaries

3.1 Compliance Sites

Site Variable Year	410083 804.00 2022/23					T OUTFALL nes/day, 2		e for rele	ease		Site Year		410083 022/23
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	[]S []S []S []T []T []T []T []T []T []T []T	[]T []T []T []T []T []T []T []T	[]S []T []T []T []T []T []T []T []T	<pre>[]T []T []T []T []T []T []T []S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	<pre>[]S []S []S []S []S []S []S []S</pre>	[]S []S []S []S []S []S []S []S	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Mean Median Max.Daily Min.Daily Inst.Max Inst.Min Total Max.EC@25C Min.EC@25C Summ	[]T []T []T []T []T []T []T []T	[]S []S []S []S []S []S []S []S	[]T []T []T []T []T []T []T []T	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	[]S []S []S []S []S []S []S []S	
Annual Mean [Ann. Median [Annual Total [Maxi Daily Mean [Instant [Monthly []S]S]S mum Mi:]S]S]S]S	nimum []S []S []S	exce S T All	pt where . Rating . Probe Totals ar	the follo table su out of wa e in tonn	ter/below	are used	ent th					

No salt loads can be produced for site 410083 as no flows are calculated by Ventia.

Site Variable Year	4101000 804.00 2022/23			REEK AT RO nsport (t,				e for rele	ease		Site Year	410 20	
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	
1	[]B	0.0R	[]B	[]B	[]B	[]B	0.9?	1.8?	[]Т	2.5	0.1	0.1	
2	[]B	0.0R	[]B	[]B	[]B	[]B	0.6?	0.5?	9.5?	1.8	0.1	0.1	
3	[]B	0.0R	[]B	[]B	[]B	[]B	0.9?	0.0R	13.6N	1.4	0.1	0.1	
4	[]B	0.0R	[]B	[]B	[]B	[]B	1.0?	0.0R	14.4N	1.0	0.1	0.0	
5	[]B	0.0R	[]B	[]B	[]B	[]B	1.0?	0.0R	13.3N	0.6	0.1	0.0R	
6	[]B	[]B	[]B	[]B	[]B	[]B	0.4?	0.0R	13.2N	0.3	0.1	0.0R	
7	[]B	[]B	[]B	[]B	[]B	4.1?	0.4R	0.0R	13.1N	0.3	0.1	0.0R	
8	[]B	[]B	[]B	[]B	[]B	2.7?	0.4R	0.0R	12.9N	0.2	0.1	0.1	
9	[]B	[]B	[]B	[]B	[]B	1.8?	0.5?	0.0R	12.8N	0.2	0.1	0.1	
10	[]B	[]B	[]B	[]B	[]B	1.5?	0.6?	0.0R	12.0N	0.2	0.1	0.1	
11	[]B	[]B	[]B	[]B	[]B	1.2?	0.8?	0.0R	8.9N	0.1	0.1	0.0	
12	[]B	[]B	[]B	[]B	[]B	0.9?	0.8?	0.0R	4.5?	0.2	0.1	0.0R	
13	[]B	[]B	[]B	[]B	[]B	0.5?	2.3?	0.0R	2.0?	0.3	0.1	0.0R	
14	[]B	[]B	[]B	[]B	[]B	0.3?	2.9?	0.0R	1.1?	0.6	0.2	0.0R	
15	[]B	[]B	[]B	[]B	[]B	0.2?	2.8?	0.0R	0.8?	0.9	0.1	0.0R	
16	[]B	[]B	[]B	[]B	[]B	0.4?	[]B	0.0R	0.5?	1.2	0.1	0.0R	
17	[]B	[]B	[]B	[]B	[]B	0.5?	[]B	0.0R	0.3?	1.1	0.1	0.0R	
18	[]B	[]B	[]B	[]B	[]B	0.4?	[]B	0.0R	0.2?	0.8	0.1	0.0R	
19	[]B	[]B	[]B	[]B	[]B	0.4?	[]B	0.0R	0.2?	0.5	0.1	0.0R	
20	[]B	[]B	[]B	[]B	[]B	0.3?	[]B	[]Т	0.8?	0.4	0.1	0.0R	
21	[]B	[]B	[]B	[]B	[]B	0.4?	[]B	[]T	2.1?	0.3	0.1	0.0R	
22	[]B	[]B	[]B	[]B	[]B	0.2?	0.3?	[]T	2.6?	0.2	0.1	0.0R	
23	[]B	[]B	[]B	[]B	[]B	0.4?	0.6?	[]T	3.6?	0.2	0.1	0.0R	
24	0.0R	[]B	[]B	[]B	[]B	0.4?	1.0?	[]T	3.7?	0.2	0.1	0.0R	
25	0.0R	[]B	[]B	[]B	[]B	0.5?	0.8?	[]T	3.2?	0.1	0.1	0.0R	
26	0.0R	[]B	[]B	[]B	[]B	0.6?	0.5?	[]T	2.6?	0.1	0.1	0.0R	
27	0.0R	[]B	[]B	[]B	[]B	0.8?	0.4R	[]T	1.9?	0.1	0.1	0.0R	
28	0.0R	[]B	[]B	[]B	[]B	0.8?	0.4R	[]Т	1.4?	0.1	0.1	0.0R	
29	0.0R	[]B	[]B	[]B	[]B	0.5?	0.1R		2.0?	0.1	0.1	0.5	
30	0.0R	[]B	[]B	[]B	[]B	0.6?	0.2R		2.7	0.1	0.1	0.1R	
31	0.0R	[]B		[]B		0.8?	1.7?		2.8		0.1		
Mean	[0.0]	[0.0]	[]B	[]B	[]B	[0.8]	[0.9]	[0.1]	[5.4]	0.5	0.1	0.0R	
Median	[0.0]	[0.0]	[]B	[]B	[]B	[0.5]	[0.6]	[0.0]	[2.7]	0.3	0.1	0.0R	
.Daily	[0.0]	[0.0]	[]B	[]B	[]B	[4.1]	[2.9]	[1.8]	[14.4]	2.5	0.2	0.5R	
.Daily	[0.0]	[0.0]	[]B	[]B	[]B	[0.2]	[0.1]	[0.0]	[0.2]	0.1	0.1	0.0R	
st.Max	[0.0]	[0.0]	[]B	[]B	[]B	[5.3]	[3.8]	[2.4]	[15.3]	2.6	0.2	0.7R	
st.Min	[0.0]	[0.0]	[]B	[]B	[]B	[0.0]	[0.1]	[0.0]	[0.1]	0.1	0.0	0.0R	
Total	[0]	[0]	[]B	[]B	[]B	[21]	[22]	[2]	[162]	16	3	1R	
EC@25C	[169]	[176]	[]B	[]B	[]B	[321]	[595]	[501]	[295]	156	179	227R	
EC@25C	[160]	[162]	[]B	[]B	[]B	[209]	[319]	[461]	[129]	128	118	145R	

	Summaries		Notes
			All recorded data is continuous and reliable
			except where the following tags are used
Annual Mean	[1.1]		? Irregular data use with caution
Ann. Median	[0.2]		B Backed-up stage
Annual Total	[228]		N Rating Extrapol. within x1.5 max flow
			R Rating table extrapolated
	Maximum	Minimum	T Probe out of water/below instrument th
Daily Mean	[14.4]	[0.0]	All Totals are in tonnes
Instant	[15.3]	[0.0]	Figures refer to period ending 2400 hours.
Monthly	[162]	[0]	

Site Variable Year	4101092 804.00 2022/23							AIN AT RI nes/day,		(GMSRR) le for rele	ease		Si Ye				L0921 22/23
Day	Jul	Aug	Sep	Oc	t	Nc	V	Dec	Jan	Feb	Mar	Apr	Ma	У	Ju	in	Day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>[]T []T []T []T []T []T 0.0 0.0 []T []B []B []B []B []B []B []B []B</pre>	<pre>[]B []B</pre>] B] B] B] B] B] B] B] B] B] B] B] B] B] B] B] B] B] B] B] B	<pre>[]B []B []B 3.5R 0.5? 0.2? 0.2? 0.3? 0.1? []* []* []* []* []* []* []* []*</pre>	<pre>[]* []* []* []* []* []* []* []*</pre>	0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.0 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0] T] T] T] T] T] T] T] T] T] T]	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Mean Median Max.Daily Min.Daily Inst.Max Inst.Min Total Max.EC@25C Min.EC@25C	[0.0] [0.0] [0.0] [0.1] [0.0] [0] [188] [153] maries	[0.0] [0.0] [0.0] [0.0] [0.0] [0] [103] [74]	[]B []B []B []B []B []B []B []B	(((((((] B] B] B] B] B] B] B] B	[[[[[[]B]B]B]B]B]B]B]B	[0.7] [0.3] [3.5] [0.1] [11.5] [0.0] [6] [292] [233]	[0.0] [0.0] [0.1] [0.0] [0.4] [0.0] [308] [188]	[0.1] [0.2] [0.0] [0.6] [0.0] [2] [498] [192]	0.1 0.0 0.2 0.0 0.8 0.0 2 369 153	[0.0] [0.0] [0.0] [0.0] [0.0] [0] [865] [69]	[[[[[[]T]T]T]T]T]T]T	[[[[[[[]T]T]T]T]T]T]T	

	Dunnarres	,	100005
			All recorded data is continuous and reliable
			except where the following tags are used
Annual Mean	[0.1]		* Debris Effecting Sensor
Ann. Median	[0.0]		? Irregular data use with caution
Annual Total	[10]		B Backed-up stage
			M Equipment malfunction
	Maximum	Minimum	R Rating table extrapolated
Daily Mean	[3.5]	[0.0]	T Probe out of water/below instrument th
Instant	[11.5]	[0.0]	All Totals are in tonnes
Monthly	[6]	[0]	Figures refer to period ending 2400 hours.

Site Variable Year	4101094 804.00 2022/23									AGOON (LAC nnes/day,	G) Available	e foi	r rele	ase		Site Year)10940)22/23
Day	Jul	Au	g	Sej	p	00	t	No	v	Dec	Jan	F€	eb	Mar	Apr	Мау	Jun	Day
1	[]B	[]B	[]B	[]B	[]B	[]B	3.2	[] *	[]*	2.6N	0.4	0.1	1
2	[]B	[] B	[]B	[] B	[] B	[]B	2.4	[] *	[]*	1.9N	0.3	0.1	2
3	0.0	[] B	[]B	[] B	[] B	[]B	3.1	[] *	[]*	3.0R	0.1	0.1	3
4	0.0	[] B	[]B	[] B	[] B	[]B	2.5	[] *	[]*	4.5R	0.1	0.1	4
5	[]Т	[] B	[] B	[] B	[] B	2.7	3.0	[] *	[]*	5.2R	0.1	0.2	5
6	[]T	ſ] B	ſ	1B	ſ] B	ſ	ÌВ	1.3	3.8	ſ] *	[]*	4.3R	0.1	0.1	6
7	[]]	ſ]B	ſ]B	ſ]B	ſ]B	2.5	3.9	ſ]*	[]*	3.7N	0.1	0.1	7
8	[]]]	Г]B	Г]B	ſ]B	ſ]B	1.2	3.4	ſ] *	[]*	3.1N	0.1	0.1	8
9	[]T	ſ]B	ſ]B	ſ]B	ſ]B	4.9N	3.3	r r]*	[]*	3.1N	0.0	0.2	9
10	[]T	ſ] B	L L]B	ſ] B	L F]B	4.9N 8.4N	3.1	L L]*	[]*	4.2R	0.0	0.2	10
11	[]T	L r] B	L T] B	L r] B	L r]B	8.0R	3.3	L r]*	[]*	4.2R 4.2R	0.0	0.1	10
		L		L		L		L	-			L		[]*				12
12	[]T	L] B	L]B	l]B	L]B	5.0R	3.6	L] *		3.8R	0.2	0.1	
13	[]T	L]B	L]B	L]B	L]B	5.4N	4.ON	L]*	[]*	2.2	0.2	0.1	13
14	[]Т	L] B	[]B	[] B	[] B	4.8	1.9	Ĺ] *	[]*	2.0	0.2	0.0	14
15	[]Т	[]B	[]B	[] B	[]B	6.0N	2.4	[] *	[]*	1.9	0.2	0.0	15
16	[]Т	[]B	[]B	[]B	[]B	7.0N	2.7	[] *	[]*	3.0N	0.1	0.0	16
17	[]Т	[] B	[]B	[] B	[] B	6.7N	1.8	[] *	[]*	2.9	0.1	0.0	17
18	[]Т	[] B	[] B	[]B	[] B	6.6N	1.4	[] *	[]*	2.6	0.1	0.0	18
19	[]Т	[] B	[] B	[]B	[] B	6.7N	3.6N	[] *	[]*	2.3	0.1	0.0	19
20	[]Т	[] B	[] B	[] B	[] B	7.0N	2.2	[] *	[]*	2.3	0.1	0.0	20
21	[]Т	[] B	[]B	[] B	[] B	6.3N	1.3	[] *	[]*	1.9	0.1	0.0	21
22	[]Т	[] B	[]B	[] B	[] B	6.5R	1.2	[] *	[]*	1.7	0.1	0.0	22
23	[]Т	ſ] B	ſ] B	ſ]B	ſ]B	8.1R	3.5	ſ] *	[]*	1.1	0.1	0.1	23
24	[]T	ſ]B	ſ]B	ſ]B	ſ]B	4.2	3.0	ſ] *	[]*	0.9	0.1	0.0	24
25	0.3	ſ] B	ſ]B	ſ]B	ſ]B	3.6	[]*	ſ]*	[]*	0.8	0.1	0.0	25
26	0.2	ſ]B	ſ]B	ſ]B	ſ]B	3.2	[]*	ſ] *	[]*	0.7	0.3	0.0	26
27	0.1	r]B	ſ]B	r]B	ſ]B	3.2	[]*	Г]*	[]*	0.7	0.7	0.0	27
28	0.1	r]B	r r]B	r]B	r]B	2.6	[]*	r	」 】*	[]*	0.6	0.3	0.1	28
29	0.0	L r]B	L T]B	r]B	L T]B	2.0	[]*	L	1	[]M	0.0	0.5	0.1	29
30	0.0	L r]B	L T]B	r]B	L T]B	4.4	[]*			3.3R	0.4	0.4	0.1	30
31		L		L	םן	L] B	L	Ъ	4.4	[]*			2.9N	0.4		0.1	31
21	[]B	[]B			L	Ъ			4.5				2.9N		0.2		31
Mean	[0.1]	[] B	[] B	[] B	[] B	[4.9]	[2.8]	[] *	[3.1]	2.4R	0.2	0.1	
edian	[0.0]	[] B	[]B	[] B	[] B	[4.9]	[3.1]	[] *	[3.1]	2.3R	0.1	0.1	
Daily	[0.3]	[] B	[] B	[] B	[] B	[8.4]	[4.0]	[] *	[3.3]	5.2R	0.7	0.2	
Daily	[0.0]	[] B	[] B	[] B	[] B	[1.2]	[1.2]	[] *	[2.9]	0.4R	0.0	0.0	
t.Max	[0.5]	[] B	[]B	[] B	[] B	[13.9]	[9.1]	[] *	[4.3]	6.9R	1.1	0.4	
t.Min	[0.0]	[] B	[]B	[] B	[] B	[0.6]	[0.8]	[] *	[2.0]	0.3R	0.0	0.0	
Total	[1]	[]B	[]B	[] B	[] B	[134]	[68]	[] *	[6]	72R	5	2	
EC@25C	[612]	[] B	Ē] B	[]B	[]B	[675]	[554]	[] *	[177]	257R	514	967	
EC@25C	[9]	ſ]B	r]B	-]B	ŗ]B	[182]	[138]	ſ]*	[85]	46R	73	47	

	Summaries		Notes
			All recorded data is continuous and reliable
			except where the following tags are used
Annual Mean	[1.9]		* Debris Effecting Sensor
Ann. Median	[1.0]		B Backed-up stage
Annual Total	[288]		M Equipment malfunction
			N Rating Extrapol. within x1.5 max flow
	Maximum	Minimum	R Rating table extrapolated
Daily Mean	[8.4]	[0.0]	T Probe out of water/below instrument th
Instant	[13.9]	[0.0]	All Totals are in tonnes
Monthly	[134]	[1]	Figures refer to period ending 2400 hours.

3.2 Offtake Sites

7	Site Variable Year	410127 803.00 2022/23	3			RRANDERA F calc from		/d) in ton	nnes/day,	Available	for rele	Site aseYear		10127 22/23
]	Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Day
	1	20.6V	20.9	45.3	14.7	7.3	230	430	124	239 V	33.2K	81.3	67.3V	1
	2	7.6V	21.8	31.4	49.0	12.1	229	403	168	230 V	35.4K	82.5	50.9V	2
	3	1.3V	20.5	10.0	44.6	21.1	229	374	206	241 V	32.0K	92.6	60.2V	3
	4	3.8V	9.9	30.9	22.5	11.0	300	361	229	234 V	47.1K	91.3	41.0V	4
	5	12.9V	0.0	12.9	0.0	9.4	307	363	254	252 V	50.2K	111	34.4V	5
	6	1.0V	0.0	30.2	0.0	10.6	293	366	283	211 V	51.0K	101	28.6V	6
	7	0.8V	8.7	13.8	0.0	15.3	277	411	316	181 V	77.2K	83.8	5.8V	7
	8	14.8V	6.3	17.8	0.0	18.4	317	423	361	208 V	51.3K	83.8	30.0V	8
	9	17.6V	1.5	7.3	3.0	30.7	301	364	357	200 V	72.7K	62.9	18.3V	9
	10	15.1V	2.0	16.5	10.7	54.9	305	414	322	190 V	61.6K	81.3	21.1V	10
	11	16.6V	13.2	17.0	6.5	58.9	373	378	352	191 V	71.9K	97.9	29.9V	11
	12	22.2V	13.5	8.0	11.1	66.4	305	357	408	240 V	75.1K	81.9	13.0V	12
	13	19.4V	8.7	9.7	18.2	38.9	230	342	378	213 V	47.0K	115	17.6V	13
	14	16.6V	2.9	9.4	12.9	5.6	254	345	311	200 V	48.0K	124	10.0V	14
	15	16.4V	19.5	10.5	5.7	14.2	286	416	337	257 V	51.2K	126	14.1V	15
	16	18.8V	25.2	9.1	1.6	14.8	305	417	352	257 V	48.2K	132	16.5V	16
	17	21.7V	1.0	15.4	1.9	25.5	391	356	391	273 V	27.9K	128	16.7V	17
	18	22.8V	75.4	11.0	2.0	43.4	419	368	366	282 V	49.4K	118	11.0V	18
	19	23.4V	9.5	14.0	2.0	39.9	369	338	389	270 V	41.8K	94.9	13.9V	19
	20	32.3V	0.0	18.8	1.8	45.6	367	325	375	243 V	55.9K	104	14.5V	20
	21	33.5V	86.4	55.9	1.4	42.4	337	324	295	157 V	68.6	137	[]Т	21
	22	26.6V	15.5	5.1	7.8	65.2	378	314	319	124 V	66.5	69.9	[]Т	22
	23	10.5V	43.0	9.6	10.5	73.0	321	256	267 V	159 V	88.9	103	[]Т	23
	24	29.1V	1.4	7.2	6.9	146	338	288	250 V	160 V	73.1	181	[]Т	24
	25	33.8V	17.9	12.1	3.5	122	358	286	266 V	136 V	72.8	112 V	[]Т	25
	26	28.7V	13.3	11.1	0.0	172	319	278	294 V	119 V	72.6	156 V	[]Т	26
	27	29.7V	30.1	3.4	0.0	208	398	303	261 V	121 V	99.1	119 V	[]Т	27
	28	31.5V	30.3	7.8	2.9	261	418	279	238 V	77.3V	126	112 V	[]Т	28
	29	28.2V	4.6	6.1	6.6	161	433	303		89.8V	82.2	109 V	[]Т	29
	30	30.6V	24.9	9.8	5.3	202	405	161		35.3K	122	66.8V	[]Т	30
	31	31.1V	14.0		0.0		425	141		43.0K		89.8V		31
	Mean	20.0V	17.5	15.6	8.2	66.5	330	338	302 V	188 K	63.3K	105 V	[25.7]	
	edian	20.6V	13.3	11.0	3.5	41.1	319	356	313 V	200 K	58.7K	103 V	[17.9]	
	Daily	33.8V	86.4	55.9	49.0	261	433	430	408 V	282 K	126 K	181 V	[67.3]	
	Daily	0.8V	0.0	3.4	0.0	5.6	229	141	124 V	35.3K	27.9K	62.9V	[5.8]	
	t.Max	89.3V	128	86.9	76.1	329	596	535	531 V	346 K	173 K	216 V	[93.9]	
	t.Min	0.0V	0.0	0.0	0.0	0.0	11.0	67.1	91.4V	8.3K	2.7K	32.5V	[0.0]	
	Total	619V	542	467	253	1996	10220	10480	8469V	5833K	1900K	3250V	[515]	
Max.E		206V	348	237	263	232	207	183	169V	237K	337K	425V	[186]	
Min.E0	C@25C	132V	130	175	163	157	159	124	112V	107K	158K	175V	[139]	
	Summ	aries												
				7 1 1	rocordoc	A data ig	continuo	is and rol	iablo					

All recorded data is continuous and reliable

except where the following tags are used...

K ... Minor editing
T ... Probe out of water/below instrument th
V ... Operational Data

All Totals are in tonnes

Figures refer to period ending 600 hours.

	Maximum	Minimum
Daily Mean	[433]	[0.0]
Instant	[596]	[0.0]
Monthly	[10480]	[253]

Annual Mean [125] Ann. Median [61.6] Annual Total [44540]

10129 22/23		Site aseYear	for relea	Available	es/day, A	d) in tonr	IDFs) (t/c		IAL AT OFF Isport (ca			410129 803.00 2022/23	Site Variable Year
Day	Jun	May	Apr	Mar	Feb	Jan	Dec	Nov	Oct	Sep	Aug	Jul	Day
1	44.1V	0.4	1 . 3K	84.4V	29.2	111 K	80.6K	4.5V	0.4V	0.1	19.6V	26.5V	1
2	44.4V	1.3	1.7K	74.9V	32.9	103 K	89.5K	1.4V	0.7V	7.9	9.3V	1.9V	2
3	36.1V	1.5	0.1K	66.4V	43.0	98.0K	97.8K	3.5V	0.4V	20.9	1.3V	0.0	3
4	17.0V	2.3	0.2K	61.7V	45.0	86.4K	116 K	2.2V	21.1V	12.3	0.6V	0.0	4
5	21.1V	1.1	0.1K	71.1V	54.9	73.0K	151 K	0.3V	4.7V	7.4	0.9V	0.0	5
6	24.8V	7.2	0.1K	62.8V	84.3	96.0K	142 K	0.9V	0.7V	7.7	5.5V	0.0	6
7	16.4V	40.2	0.1K	59.0V	105	87.4K	146 K	2.9V	1.6V	0.0	9.4V	0.0	7
8	11.5V	47.7	1.7K	54.9V	99.7	93.0K	162 K	0.2V	2.0V	0.0	1.1V	0.0	8
9	12.3V	37.6	2.1K	65.2V	109	103 K	144 K	9.0V	0.8V	0.0	8.0V	0.0	9
10	17.2V	39.0	0.5K	76.2V	121	121 K	120 K	12.5V	1.9V	0.0	1.7V	0.0	10
11	0.2V	20.1	1.2K	72.4V	121	139 K	116 K	11.9V	0.4V	0.0	6.8V	0.0	11
12	0.0	33.8	0.3K	62.0V	131	110 K	120 K	8.8V	1.1V	0.0	0.7V	0.0	12
13	0.0	30.0	1.2K	76.5V	144	141 K	98.5K	1.3V	1.4V	0.0	0.4V	0.0	13
14	0.0	29.7	0.6K	66.9V	131	141 K	106 K	3.1V	3.8V	0.0	1.4V	2.9V	14
15	0.0	42.3	0.3K	71.9V	93.1	134 K	84.9K	3.8V	3.1V	0.0	2.2V	13.6V	15
16	[]T	37.8	1.2K			154 K 150 K	94.9K	2.3V	0.2V		2.2V 0.6V	13.6V 6.5V	16
				62.6V	83.1					0.0			
17	[]T	24.7	1.3K	52.7V	96.8	121 K	114 K	2.8V	0.6V	0.0	0.6V	0.0	17
18	[]T	2.3	0.0K	69.5V	75.8	104 K	145 K	14.2V	0.0V	0.0	0.1V	0.0	18
19	[]T	56.8	8.3	97.6V	101	80.6K	131 K	24.2V	0.1V	0.0	0.7V	0.0	19
20	[]Т	51.8	0.6	96.0V	97.6	64.1K	147 K	21.3V	0.2V	0.0	1.3V	[]Т	20
21	[]Т	56.9	0.5	63.7V	89.0	65.5K	169 K	32.2V	0.4V	9.6	0.2V	[]Т	21
22	[]Т	48.3	0.3	50.4V	87.5	59.4K	148 K	27.0V	1.3V	0.0	0.0	[] T	22
23	[]Т	44.4	0.2	47.2V	71.2V	61.0K	114 K	28.6V	6.4V	0.0	1.7V	0.0	23
24	[]Т	34.2	0.8	44.1V	63.4V	65.6K	78.6K	26.0K	3.9V	0.0	1.0V	0.0	24
25	[]Т	63.5V	0.1	38.2V	73.6V	61.8K	115 K	24.1K	4.6V	0.0	1.5V	0.0	25
26	[]Т	63.2V	0.0	40.0V	80.0V	68.7K	102 K	30.7K	3.7V	0.0	0.6	6.9V	26
27	[]Т	48.3V	13.1	29.0V	75.1V	71.0	108 K	35.1K	2.6V	0.0	0.0	1.7V	27
28	[]Т	51.2V	10.9	18.8V	61.1V	81.8	123 K	45.2K	3.6V	0.0	0.7	0.7V	28
29	0.0	52.2V	2.3	14.7V		85.4	120 K	52.3K	3.1V	0.0	1.0	30.9V	29
30	0.0	37.1V	0.5	4.0K		50.2	120 K	60.2K	1.5V	0.2V	2.8	44.9V	30
31		50.5V		1 . 9K		25.0	128 K		0.6V		2.9	44.6V	31
	[14.4]	34.1	1.7	56.7K	85.7V	92.1K	120 K	16.4K	2.5V	2.2V	2.7V	[6.5]	Mean
	[12.3]	37.8	0.5	62.6K	85.9V	87.4K	120 K	10.4K	1.4V	0.0V	1.1V	[0.0]	Median
	[44.4]	63.5	13.1	97.6K	144 V	150 K	169 K	60.2K	21.1V	20.9V	19.6V	[44.9]	.Daily
	[0.0]	0.4	0.0	1.9K	29.2V	25.0K	78.6K	0.2K	0.0V	0.0V	0.0V	[0.0]	.Daily
	[95.4]	126	88.5	127 K	175 V	195 K	223 K	85.4K	212 V	34.6V	152 V	125]	
	[0.0]	0.0	0.0	0.0K	22.2V	0.0K	0.0K	0.0K	0.0V	0.0V	0.0V	[0.0]	st.Min
	[245]	1057	52	1757K	2399V	2855K	3731K	492K	77V	66V	85V	[181]	Total
	[181]	441	305	183K	160V	153K	204K	192K	200V	207V	176V	[270]	EC@25C
	[119]	164	161	93K	95V	107K	143K	167K	161V	165V	105V	[111]	EC@25C

	Summaries		All recorded data is continuous and reliable except where the following tags are used
Annual Mean	[37.2]		K Minor editing
Ann. Median	[12.3]		T Probe out of water/below instrument th
Annual Total	[13000]		V Operational Data All Totals are in tonnes
	Maximum	Minimum	Figures refer to period ending 600 hours.
Daily Mean	[169]	[0.0]	
Instant Monthly	[223] [3731]	[0.0] [52]	

4.0 Annual EC Summaries

4.1 Compliance Sites

Day Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Mar 1 272 V []T 209 []T 105 133 186 220 131 223 239 2 258 V []T 211 []T 105 141 220 225 138 214 268 3 284 V []T []T []T 122 147 198 224 150 198 279 4 []T []T []T []T 17 []T 160 243 187 236 161 193 283 5 []T []T []T []T 151 313 170 231 163 230 302 6 []T []T []T []T 149 294 175 159 151 233 314 7 []T	te 410083 ar 2022/23
2 258 V []T 211 []T 90.6 141 220 225 138 214 268 3 284 V []T []T []T 122 147 198 224 150 198 279 4 []T []T []T []T 122 147 198 224 150 198 279 4 []T []T []T []T 122 147 198 224 150 198 279 4 []T []T []T []T 122 147 198 224 150 198 279 5 []T []T []T []T 160 243 187 236 161 193 283 5 []T []T []T []T []T 149 294 175 159 151 233 314 7 []T []T []T 140 131 225 194 161 150 267 328 9	y Jun Day
3 284 V []T []T []T 122 147 198 224 150 198 279 4 []T []T []T []T []T 122 147 198 224 150 198 279 4 []T []T []T []T []T 160 243 187 236 161 193 283 5 []T []T []T []T []T 151 313 170 231 163 230 302 6 []T []T []T []T 149 294 175 159 151 233 314 7 []T []T []T []T 149 294 175 159 151 233 314 7 []T []T []T []T 131 225 194 161 150 267 328 9 []T []T 140 131 225 194 161 147 269 310	
4 []]T []]T []]T []]T 160 243 187 236 161 193 283 5 []]T []]T []]T []]T 151 313 170 231 163 230 302 6 []]T []]T []]T []]T 149 294 175 159 151 233 314 7 []]T []]T []]T []]T 139 231 182 157 145 267 321 8 []]T []]T []]T 140 131 225 194 161 150 267 328 9 []]T []]T 140 131 225 194 161 150 267 328 9 []]T []]T 153 130 221 195 164 147 269 310 10 []]T 272 []]T 166 125 222 200 167 157 286 290 11 686 V 274	
5 []T []T []T []T 151 313 170 231 163 230 302 6 []T []T []T []T []T 149 294 175 159 151 233 314 7 []T []T []T []T []T 139 231 182 157 145 267 321 8 []T []T []T 140 131 225 194 161 150 267 328 9 []T []T []T 153 130 221 195 164 147 269 310 10 []T 272 []T 163 127 225 200 167 157 286 290 11 686 V 274 []T 166 125 222 200 172 159 292 268	
6[]T[]T[]T[]T1492941751591512333147[]T[]T[]T[]T1392311821571452673218[]T[]T[]T1401312251941611502673289[]T[]T[]T15313022119516414726931010[]T272[]T16312722520016715728629011686V274[]T166125222200172159292268	
7 []T []T []T 139 231 182 157 145 267 321 8 []T []T []T 140 131 225 194 161 150 267 328 9 []T []T []T 153 130 221 195 164 147 269 310 10 []T 272 []T 163 127 225 200 167 157 286 290 11 686 V 274 []T 166 125 222 200 172 159 292 268	
8 []T []T []T 140 131 225 194 161 150 267 328 9 []T []T []T 153 130 221 195 164 147 269 310 10 []T 272 []T 163 127 225 200 167 157 286 290 11 686 V 274 []T 166 125 222 200 172 159 292 268	
9 []T []T []T 153 130 221 195 164 147 269 310 10 []T 272 []T 163 127 225 200 167 157 286 290 11 686 V 274 []T 166 125 222 200 172 159 292 268	
10 []T 272 []T 163 127 225 200 167 157 286 290 11 686 V 274 []T 166 125 222 200 172 159 292 268	
11 686 V 274 []T 166 125 222 200 172 159 292 268	
	259 10
12 [] 17. 27.6 [] 17. 163 125 23.6 21.9 17.4 15.9 25.7 27.5	
13 []T 269 []T 181 111 247 195 175 170 125 296	
14 []T 252 []T 138 104 259 211 184 162 184 292	
15 []T 215 []T 131 120 262 254 193 161 202 203	
16 []T 193 313 168 135 268 243 183 165 133 266	238 16
17 []T 195 295 165 138 283 169 174 169 149 380	
18 []T 193 287 162 138 297 155 175 169 190 360	
19 []T 195 282 161 145 240 151 174 172 177 319	
20 []T 203 280 161 164 231 171 170 173 165 331	
21 []T 208 270 163 162 250 183 158 174 163 397	
22 []T 210 264 169 162 248 164 158 173 165 384	
23 []T 209 258 148 159 226 168 173 167 179 343	
24 []T 208 275 147 150 219 161 176 164 206 349	
25 []T 204 258 143 142 239 161 175 178 220 329	
26 []T 202 []T 149 138 255 182 143 222 226 305	
27 []T 202 []T 158 136 293 214 150 246 226 279	
28 []T 203 []T 159 156 241 174 158 233 231 262	
29 []T 205 []T 162 146 226 161 166 236 256	
30 []T 203 []T 169 136 255 139 181 242 257	
31 []T 205 157 237 152 210 265	31
Mean [375] [218] [267] [157] 137 239 185 179 170 212 302	
Median [278] [205] [273] [161] 138 240 182 174 165 217 296	
ax.Daily [686] [276] [313] [181] 164 313 254 236 246 292 397	
n.Daily [258] [193] [209] [131] 90.6 133 139 143 131 125 203.	
inst.Max [732] [323] [331] [188] 191 397 294 255 258 320 405	
Inst.Min [246] [190] [202] [101] 74.2 128 131 133 109 80.1 188	206

Summaries _____ V ... Operational Data

----- Notes -----All recorded data is continuous and reliable except where the following tags are used... T ... Probe out of water/below instrument th

	[210 [203	-	
	Maximu	m	Minimum

Daily Mean Instant

[686] [90.6] [732] [74.2]

Figures refer to period ending 2400 hours.

Site Variable Year	41010 820.0 2022/3	0		DGEL CE nductiv								labl	e for	rel	ease			Site Year		010005 022/23
Day	Jul	Aug		Sep	00	ct	N	ov	Dec		Jar	ı	Feb	C	Mar		Apr	Мау	Jun	Day
1	[]В	164	[]B	[] B	[]B	200		322	?	481	?	[] T	137	135	177	
2	[]B	164	[]B	[]B	[] B	202		327	?	476	?	286	?	135	141	196	
3	[]B	169]]B	[] B	[] B	203		333	?	476	?	287	?	138	146	205	
4	[]B	171	[]B	[]B	[] B	206		342	?	473	?	286	?	141	142	212	
5	[]B	169]]B	[] B	[] B	210		377	?	469	?	262	?	144	137	208	
6	[]B	[]]	в Г] B	[] B	ſ] B	211		396	?	467	?	246	?	145	133	212	
7	[]в	[]]]B	ſ]B	ſ]B	213		397	?	470	?	233	?	146	129	218	
8	[]B	[]]]B	[]B	ſ] B	213		405	?	472	?	225	?	143	123	218	
9	[]B	[]]]B	ſ]B	ſ]B	213		406	?	468	?	220	?	140	138	207	
10	[]B	[]]	-]B	ſ]B	ſ]B	216		415	?	468	?	217	?	138	144	190	1
11	[]B	[]]	-]B	ſ]B	ſ]B	218		417	?	469	?	211	?	138	132	175	1
12	[]B	[]]	-]B	Г]B	ſ]B	215		426	?	469	?	205	?	140	138	168	1
13	[]B	[]]	-]B	ſ]B	Г]B	215		436	?	470	?	202	?	142	148	163	1
14	[]B	[]]	-]B	r r]B	r r]B	213	?	437	?	474	?	198	?	145	155	164	1
15	[]B	[]]	-]B	r r]B	r r]B	216	?	441	?	473	?	194	?	147	156	167	1
16	[]B	[]]]B]B	L F]B	L T]B	221	?	1 1 1]B	473	?	191	?	144	156	167	1
17	[]B	[]]]B]B	L]B	[] B	221	?	L] B	475	?	187	?	143	152	166	1
18	[]B	[]]] B] B	L] B	ſ] B	237	: ?	L] B	475	: ?	184	: ?	143	152	168	1
19	[]B	[]]		-	L		-				L]В	473	? ?	184	: ?	143		166	19
			-]B	L]B	[]B	243	?	L	-				-	137	146		2
20	[]B	[]]	-]B	L]B	[]B	249	?	[]B	[] T] T	174	?		150	163	
21	[]B	[]]]B	L]B	[]B	260	?	L]B]] T	168	?	138	157	165	21
22	[]B	[]]	-]B	L]B]]B	257	?	484	?	[] T	163	?	140	153	162	22
23	[]B	[]]	-]B	L]B]]B	267	?	489	?	[] T	158	?	142	146	166	23
24	163	[]]	-]B	l]B]]B	273	?	491	?	[] T	154	?	146	127	172	2
25	164	[]]	-]B	l]B	[] B	279	?	491	?	[] T	149	?	147	131	173	25
26	166	[]]	-] B	[] B	[] B	285	?	489	?	[] T	145	?	148	141	167	20
27	166	[]]	-] B	[] B	[] B	292	?	502	?	[] T	140	?	150	143	152	21
28	166	[]]]B	[] B	[] B	297	?	493	?	[] T	136	?	152	151	153	28
29	166	[]]]B	[]B	[]B	304	?	485	?			137	?	149	157	148	29
30	164	[]]	-]B	[]B	[]B	311	?	481	?			137		139	158	152	30
31	163	[]]	В		[]B			316	?	476	?			136			169		3
Mean	[165]	[168] []B	[] B	[]B	241	?	[430]	[472]	[194]	143	145	177	
Median	[165]	[169]] []B	[]B	[]B	221	?	[436]	[473]	[189]	143	146	167	
.Daily	[166]	[171]] []B	[] B	[] B	316	?	[502]	[481]	[287]	152	169	218	
.Daily	[163]	[164]] []B	[] B	[] B	200	?	[322]	[467]	[136]	135	123	148	
st.Max	[169]	[176]] []B	[] B	[] B	321	?	[595]	[501]	[295]	156	179	227	
st.Min	[160]	[162]] []B	[] B	[]B	198	?	[319]	[461]	[129]	128	118	145	
Su	mmaries							No	tes											
				All	reco	orded	dat	a is	contin	uou	s and	rel	iable							
									owing											

Annual Mean[236]except where the following tags are used...Ann. Median[174]? ... Irregular data use with cautionBBBacked-up stageTTProbe out of water/below instrument th MaximumMinimumDaily Mean[502][123]Instant[595][118]

Site Variable Year	4101092 820.00 2022/23			IE MAIN SO ivity (µS/				(GMSRR) le for rel	ease		Site Year		010921 022/23
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1	184	[]Т	[]B	[]B	[]B	[]B	361	284	296	182	[]T	[]T	
2	179	[]Т	[]B	[]B	[]B	[]B	367	284	291	211	[]Т	[] T	
3	178	[]T	[]B	[]B	[]B	[]B	362	292	278	292	[]T	[] T	
4	175	[]T	[]B	[]B	[]B	[]B	362	287	288	244	[]T	[]T	
5	175	96.6	[]B	[]B	[]B	255	341	292	314	429	[]T	[]T	
6	176	93.8	[]B	[]B	[]B	256	309	307	309	808	[]T	[]T	
7	178	88.5	[]B	[]B	[]B	255	364	289	285	773	[]T	[]T	
8	178	[]T	[]B	[]B	[]B	245	313	273	245	672	[]T	[]T	
9	177	[]B	[]B	[]B	[]B	252	243	314	233	612	[]T	[]T	
10	176	[]B	[]B	[]B	[]B	268	317	317	261	556	[]T	[]T	
11 12	176	[]B []B	[]B	[]B	[]B	277 274	460	312	300	521	[]T []T	[]T	
13	178 176	[]B []B	[]B []B	[]B []B	[]B []B	274	558 624	306 307	327 309	503 445	[]T []T	[]T []T	
14	178	[]B	[]B	[]B	[]B	274 278	609	285	291	479	[]T []T	[]T	
15	171	[]B	[]B	[]B	[]B	284	551	280	261	726	[]T	[]T	
16	178	[]B	[]B	[]B	[]B	285	538	291	236	655	[]]T	[]T	
17	174	[]B	[]B	[]B	[]B	289	464	306	200	453	[]]T	[]T	
18	166	[]B	[]B	[]B	[]B	298	411	322	186	343	[]]T	[]T	
19	169	[]B	[]B	[]B	[]B	308	315	263	213	574	[]T	[]T	
20	[]Т	[]В	[]B	[]В	[]B	314	177	216	210	650	[]Т	[]T	
21	[]Т	[]В	[]B	[]B	[]B	314	173	[]M	199	648	[]Т	[]T	
22	[]Т	[]B	[]B	[]B	[]B	307	105	[] M	206	633	[]Т	[]T	22
23	[]Т	[]B	[]B	[]B	[]B	291	140	478	231	[]Т	[]Т	[]T	
24	[]Т	[]B	[]B	[]B	[]B	322	182	470	263	[]Т	[]Т	[]T	24
25	[]Т	[]B	[]B	[]B	[]B	340	221	399	263	[]Т	[]Т	[] T	
26	[]Т	[]B	[]B	[]B	[]B	351	224	372	277	[]Т	[]Т	[]T	
27	[]Т	[]B	[]B	[]B	[]B	349	214	348	258	[]Т	[]Т	[] T	
28	[]Т	[]B	[]B	[]B	[]B	348	234	325	239	[]T	[]Т	[]T	
29	[]Т	[]B	[]B	[]B	[]B	341	255		197	[]T	[]Т	[]T	
30	[]T	[]B	[]B	[]B	[]B	346	230		190	[]Т	[]Т	[]T	
31	[]Т	[]B		[]B		331	276		187		[]T		31
Mean	[176]	[93.0]	[]B	[]B	[]B	[298]	332	[316]	253	[519]	[]T	[]Т	
Median	[176]	[93.8]	[]B	[]B	[]B	[291]	315	[306]	261	[538]	[]T	[]Т	
Max.Daily	[184]	[96.6]	[]B	[]B	[]B	[351]	624	[478]	327	[808]	[]Т	[] T	
Min.Daily	[166]	[88.5]	[]B	[]B	[]B	[245]	105	[216]	186	[182]	[]Т	[] T	
Inst.Max	[188]	[103]	[]B	[]B	[]B	[377]	664	[498]	369	[865]	[]Т	[] T	
Inst.Min	[153]	[74.2]	[]B	[]B	[]B	[233]	92.3	[192]	153	[69.1]	[]T	[]T	
Sun	maries				Nc	tes							
				l recorded									
	-			cept where		5 5	s are us	ed					
	311]			Backe									
nn. Median [2	287]			Equip									
Mos	imum M-	inimum	Т.	Probe	out of w	ater/belo	w instru	ment th					
Max	rimum M:	inimum											

	Maximum	Minimum
Daily Mean	[808]] [88.5]
Instant	[865] [69.1]

Figures refer to period ending 2400 hours.

Site Variable Year	41010940 820.00 2022/23	0	LAGOON DRA Conductiv				G) Available	e for rel	ease		Site Year		10940 22/23
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Mean [Mean [<pre>[]B []B 104 22.0 []T []T []T []T []T []T []T []T</pre>	<pre>[]B []B []B []B []B []B []B []B</pre>	<pre>[]B []B</pre>	<pre>[]B []B []B []B []B []B []B []B</pre>	<pre>[]B []B []B []B []B []B []B []B</pre>	<pre>[]B 411 385 398 367 466 461 457 373 363 292 244 284 252 300 342 233 316 264 310 302 248 274 280 295 268 289 250 245 281 268 [321] 268</pre>	244 188 281 258 292 275 293 280 300 303 277 249 202 210 235 311 251 190 217 230 181 207 212 192 []* []* []* []* []* []*	<pre>[]* []* []* []* []* []* []* []*</pre>	[]* []* []* []* []* []* []* []*	133 144 117 160 174 160 145 122 138 167 159 161 157 170 174 187 168 168 172 183 173 187 173 186 189 197 197 203 192 193	218 229 242 266 292 303 292 376 418 377 326 368 314 319 318 320 323 334 354 354 354 354 354 354 354 354 35	155 174 160 193 226 186 222 173 239 281 293 316 316 316 316 317 345 341 362 377 348 371 383 381 370 385 412 419 446 364 359 362	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 223 24 5 26 27 8 29 30 31
Max.Daily [Min.Daily	[602] [22.0] [612]	[]B []B []B	[]B []B []B []B	[]B []B []B	[]B []B []B	[466] [244] [846]	[311] [181] [554]	[]* []* []*	[146] [121] [177]	203 117 257 46.4	418 145 514 73.3	446 155 967 47.1	
Annual Mean [28 Ann. Median [28 Maxi Daily Mean [60)2]	nimum [22.0] [9.4]	All : excep * B M T	recorded ot where . Debris . Backed . Equipm . Probe	data is of the follo Effection -up stage ent malfo out of wa	continuou owing tag ng Sensor e unction ater/belo	s and rel: s are used w instrume z 2400 hour	iable d ent th					

4.2 Offtake Sites

Site Variabl Year	41012 e 820.0 2022/:	0			RRANDERA H /cm) in µS		, Availab	le for re	lease		Site Year	2	410127 2022/23
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1	161	132	184	176	171	167	176	138	115	165	255	174 V	v 1
2	163	137	187	183	172	163	171	147	117	162	256	174 V	
3	164	146	191	210	171	168	166	143	119	161	276	175 V	7 3
4	162	147	195	224	175	168	158	139	116	159	286	177 V	
5	159	149	202	233	180	163	155	137	110	159	284	176 V	7 5 7 6
6	159	147	205	238	182	168	162	152	109	159	285	180 V	
7	160	146	211	235	184	176	171	156	108	164	293	180 V	
8	156	143	214	238	184	186	161	166	111	184	303	181 V	
9	152	142	215	235	185	195	156	162	112	198	307	172 V	-
10	151	141	216	228	168	196	157	162	112	228	307	165 V	
11	152	139	217	221	159	202	151	156	111	250	299	154 V	
12	152	136	219	225	161	203	150	146	113	250	296	146 V	
13	151	134	221	230	163	194	134	156	119	247	296	144 V	
14	151	132	222	227	164	190	128	138	124	242	291	141 V	
15	151	217	225	227	166	188	140	133	135	236	368	144 V	
16	151	318	225	233	163	187	134	144	140	232	395	143 V	
17	152	313	224	243	162	185	130	141	140	238	292	151 V	
18	154	317	223	255	170	180	130	142	141	245	261	154 V	
19	157	332	222	259	189	176	129	138	146	261	256	158 V	
20	172	335	222	226	188	188	128	134	139	272	252	163 V	
21	198	330	232	180	191	174	127	131	146	288	244	г[]	
22	204	277	234	169	196	172	132	130	161	304	256	г[]	
23	203	228	225	171	195	172	135	122	196	313	272	г[]	
24	199	198	225	166	199	174	133	116	224	313	260	г[]	
25	186	195	221	165	219	172	135	113	204	299	224 V	г[]	
26	172	191	206	171	226	183	138	113	185	289	209 V	г[]	
27	165	188	198	178	229	199	136	114	176	283	206 V	г[]	
28	160	186	200	175	225	189	133	115	173	321	208 V	Γ[]	
29	151	187	188	174	206	191	133		168	330	204 V	r[]	
30	141	185	177	171	191	191	132		169	302	189 V	г[]	
31	134	183		171		181	135		165		180 V		31
Mean	163	198	211	208	185	182	144	139	142	242	268 V	[163]	
Median	159	185	216	224	183	183	135	139	139	246	272 V	[164]	
k.Daily	204	335	234	259	229	203	176	166	224	330	395 V	[181]	
n.Daily	134	132	177	165	159	163	127	113	108	159	180 V	[141]	
nst.Max	206	348	237	263	232	207	183	169	237	337	425 V	[186]	
nst.Min	132	130	175	163	157	159	124	112	107	158	175 V	[139]	

	Summari	_es	
Annual Mean Ann. Median	[188 [175	-	
Daily Mean Instant	Maximun [395 [425]	Minimum [108] [107]

All recorded data is continuous and reliable except where the following tags are used... T ... Probe out of water/below instrument th V ... Operational Data

Figures	refer	to	period	ending	600	hours.

Site Variable Year	4101 820. 2022	00		CANAL AT OI Livity (µS,		S/cm@25°C,	, Availabl	le for rel	ease		Site Year	:	410129 2022/23
Day	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Day
1	141	115	174	193	186	176	151	114	95.8	161	300	164	1
2	141	115	177	195	186	178	146	113	96.1	162	303	156	2
3	175	114	188	197	189	182	146	109	97.7	162	283	137	1 2 3
4	202	114	185	198	194	187	143	110	102	163	275	128	4
5	210	114	182	197	195	193	136	112	108	167	273	142	5
6	211	113	180	193	194	193	140	139	112	182	274	148	6
7	205	113	180	193	192	198	143	137	109	183	295	144	7
8	219	107	180	189	186	203	142	138	110	182	314	131	8
9	202	106	180	183	183	202	144	147	113	173	315	154	9
10	192	124	181	178	175	199	143	148	115	173	303	148	10
11	171	153	183	173	172	201	147	148	116	174	297	150	11
12	158	146	181	169	171	200	147	149	115	179	293	151	12
13	165	142	179	164	170	196	140	148	116	184	310	153	13
14	191	151	175	167	170	195	134	147	123	189	371	152	14
15	146	154	172	171	170	187	130	132	123	195	397	153	15
16	141	159	167	173	170	184	128	117	120	196	306	[]	
17	139	160	172	178	172	181	120	127	123	195	277	[]'	
18	134	162	176	180	174	180	115	125	127	202	272	[]	
19	127	163	187	179	178	177	112	126	155	184	262	[]	
20	[]	т 165	194	178	181	178	110	123	154	172	246	[]	
21	[]	т 166	194	177	183	184	109	121	157	186	268	[]	Г 21
22	[]	т 167	185	179	187	171	111	114	167	192	270	[]	
23	123	168	184	183	193	167	115	109	169	202	244	[]	
24	123	171	183	184	193	166	117	106	170	210	226	[]	
25	123	172	185	188	186	167	112	105	172	217	224	[]	г 25
26	121	174	186	185	182	164	111	104	173	234	218	[]	Г 26
27	120	175	181	190	182	161	111	98.6	174	272	203	[]	г 27
28	120	174	186	186	181	158	112	95.8	157	289	204	[]	Г 28
29	122	174	190	185	180	146	111		147	296	195	165	29
30	118	174	194	184	177	157	109		160	294	174	155	30
31	113	175		185		160	109		161		167		31
Mean	[155] 148	182	183	182	180	127	124	133	199	270	[149]
	-] 159	182	184	182	181	128	122	123	185	274	[151]
	[219] 175	194	198	195	203	151	149	174	296	397	[165]
] 106	167	164	170	146	109	95.8	95.8	161	167	[128]
] 176	207	200	196	204	153	160	183	305	441	[181]
st.Min	[111] 105	165	161	167	143	107	94.9	93.1	161	164	[119	1

Summaries

----- Notes -----

All recorded data is continuous and reliable except where the following tags are used... T ... Probe out of water/below instrument th

Annual Mean [171] Ann. Median [172]

	Maximum	Minimum
Daily Mean	[397]	[95.8]
Instant	[441]	[93.1]

Figures refer to period ending 600 hours.

5.0 Annual Site Summaries for sites affected by back-up

5.1 Compliance Sites:

- 41010005 was affected by backup during the periods from 01/07/2022 to 23/07/2022; 06/08/2022 to 06/12/2022; and 16/01/2023 and 21/01/2023.
- 41010921 was affected by backup during the periods from 08/08/2022 to 03/12/2022.
- 41010940 was affected by backup during the periods from 01/07/2022 to 02/07/2022, 31/07/2022 to 04/12/2022.
- The remaining sites were not affected by backup during the report period of 2022/2023.

5.2 Offtake Sites:

No offtake sites were affected by backup during the reporting period of 2022/2023.

Site No	Site	No. of	No. of Data	Discharge M	leasurements	Sensor	General Comments
SIte No.	Acronym	Visits	Downloads	No. of Meas.	Comments	Changes	General Comments
410083	YMS	8	8	0	No flow	1	Gate was shut throughout. 28/03/2023: Old sensor was replaced with a brand-new level sensor provided by MIA. Old sensor S/n 21503041. NEW SENSOR S/N PS5-000353.
410085	LMC	10	10	6		2	26/07/2022: New sensor installed Mindata 1500 ec analog sensor. 28/03/2023: New sensor installed. NEW SENSOR S/N PS- 000350 OLD SENSOR S/N 431977
410174	MDJWE	11	11	3		0	3 gaugings completed
41010005	ROCUDG	10	10	1	Backup	1	Site was backed up for a period of 6 months 29/03/2023: Sensor replaced with new PONSEL sensor. New sensor S/NPS5-000352. OLD sensor S/N 21418073. New gauge board sited and installed.
41010921	GMSRR	11	11	0	Backup/no flow	1	Site was either backed up or not flowing at each visit 29/03/2023: Sensor replaced. OLD sensor S/N 21635034. New Sensor S/NPS5-333351
41010940	LAG	11	11	2	Backup/flowing	0	Site was measured twice. Site was backed up for four months. Site was flowing or pool on the rest visits.
41010955	MIRMCN	11	11	3	High flow	0	This site was high flowing during the visits. Two in three gauging were good. Outgrowing weeds were cleared since May 2023.
410127	Main Canal	11	11	8	Flowing	0	Five of the measurements were valid. Two measurements with large difference were informed to MIA. One measurement was abandoned due to incorrect flow observations.
410129	Sturt Canal	11	11	5	Flowing	1	Good measurement performed. 28/06/2023: New water quality sensors were installed.
CD-2-1922	CD-2-1922	11	11	0	Low flow	0	Low flow, unable to measure. Rest all dry.
MS-2MDJY-01	MDJY	11	11	3	Flowing	1	Measured 3 times during the year. 29/03/2023: Sensor replaced. Old Sensor S/N 21407022. New Sensor S/N PS5-000349.
			TOTALS	31			
General Commer	<u>nts</u>						

6.0 EWA's 2022/2023

WA EF	Site Name ID		EXTRA WORKS DESCRIPTION		Total Value (ex GST)	Status
	41012 7	NARREG	Narrenda Regulator S91i Troubleshotting	PB	\$3,999 .66	Compl ete
	Multi ple	Multiple	x 5 OTT PLS500 - Ponsel turbidity x 1 - Ponsel C4E EC x 1 - Ponsel PH x 1 - New program and labour	PB	\$25,72 6.14	Compl ete
	Multi ple	Multiple	Replacement gauge boards	PB	\$1,939 .08	NYC
	41010 921	GMSRR	OTT SVR100 surface velocity radar and x 8 hours labour for Matt + x 8 hours labour for Tom, to be installed at GMSRR as a trial	PB	\$15,10 3.00	Compl ete
	Multi ple	Multiple	x 5 Ponsel C4E EC x $$ - Ponsel turbidity x 1 $$ - Ponsel PH x 1 - New program and labour	PB	\$21,02 2	NYC

7.0 410127 MAIN CANAL @ NARRANDERA REGULATOR

7.1 Measurement Summary

Meas No.	Date	Time	Calibration Measurements Q, Measured Discharge (Ml/day)	AFFRA Sensor Q, (Ml/day)	Deviation (%)
123	14/12/2022	10:36	2310.336	2335.392	-1.074
124	24/01/2023	16:52	3091.133	3182.976	-2.885
125	22/02/2023	12:33	3800.909	3663.510	3.755
126	19/04/2023	10:59	333.418	310.040	7.544*
127	24/05/2023	11:51	920.246	979.073	-5.989

* Measurement was performed on windy days.

Discharge Measurement Summary Date Measured: Wednesday, December 14, 2022 Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Site Information		Measurement I	nformatio	on	
Site Name Station Number Location	Narandera regulator 410127 Cableway	Party Boat/Motor Meas. Number		SH M9 123	
System Information	System Setup			Units	
System Type RS-M9 Serial Number 2457 Firmware Version 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	347.6 0.0 27.03 Mid-Section		Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calculation S	ettings		Dischar	ge Uncertainty	
Track Reference Depth Reference Discharge Results Total Area Mean Velocity Total Width Total Q Maximum Measured Depth(r Maximum Measured Velocity Mean Flow Angle Rated Discharge % difference Q Water Temperature (Indeper Mean Water Temperature Mean Weighted Gauge Heigl	(m/s) ndent)	75.554 0.354 31.000 26.740 3.096 0.472 8.308 27.030 -1.074 21.500 19.309 0.000	Category Depth Velocity Width # Cells # Stations Instrumen Overall		Stats 0.27% 0.77% 0.10% 0.25% 0.86%

Site Information			Measurement I	nformatio	on	
Site Name Station Number Location		Narrandera Offtake 410127 Cableway	Party Boat/Motor Meas. Number			SH M9 124
System Informati	on	System Setup			Units	
-/	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	347. 0.0 36.8 Mid-Sec 	4	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calcula	ition Se	ettings		Dischar	ge Uncertaint	Y
Track Reference Depth Reference		System (default) Vertical Beam		Category Depth Velocity	IS0 0.10 0.08	0.26%
Discharge Results Total Area Mean Velocity Total Width Total Q Maximum Measured I Maximum Measured I Mean Flow Angle Rated Discharge % difference Q Water Temperature (Mean Water Tempera	Depth(n Velocity(Indeper	m/s)	76.442 0.468 30.500 35.777 3.147 0.612 6.067 36.840 -2.885 0.000 24.114	Width # Cells # Station: Instrumer Overall	0.10 0.10 s 1.52	0% 0.10% 0% 2% 5% 0.25%

Discharge Measurement Summary Date Measured: Wednesday, February 22, 2023 Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Recorded file is loca	ated unde	er My Documents SonTek Da	Data YYYY_MM_DD StationaryDataFiles					
Site Information	1		Measurement I	informatio	on			
Site Name Narrandera Main Station Number 410127 Location Cableway			Party Boat/Motor Meas. Number		Paul N Tom G M9 125			
System Informa	tion	System Setup			Units			
System Type	RS-M9	Tagline Azimuth (deg)	358.	7	Distance	m		
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s		
Firmware Version	4.10	Rated Discharge (m3/s)	42.4	0	Area	m2		
		Discharge Method	Mid-Sec	ction	Discharge	m3/s		
		Measurement Quality			Temperature	degC		
Discharge Calcu	lation S	ettings		Dischar	ge Uncertainty			
Track Reference		System (default)		Category	ISO	Stats		
Depth Reference		Vertical Beam		Depth	0.10%	0.34%		
Discharge Resul	ts			Velocity	0.15%	0.92%		
Total Area			78.464	Width	0.10%	0.10%		
Mean Velocity			0.561	# Cells	0.10%			
Total Width			31.000	# Station				
Total Q			43.992			0.25%		
Maximum Measured	l Depth(I	m)	3.174	Overall	1.55%	1.02%		
Maximum Measured	d Velocity	/(m/s)	0.717					
Mean Flow Angle			-5.200					
Rated Discharge			42.400					
% difference Q			3.755					
Water Temperature		ndent)	0.000					
Mean Water Tempe			24.558					
Mean Weighted Ga	uge Heig	nt	0.000					

Discharge Measurement Summary Date Measured: Wednesday, April 19, 2023

Recorded file is loca	ated unde	er My Documents SonTek Da	ta YYYY_MM_DD Si	tationaryDa	ataFiles	
Site Information	1		Measurement 1	Informatio	on	
Site Name Station Number Location	Narrandera 410127 Cableway	Party Boat/Motor Meas. Number			SM, PN M9 126	
System Informa	tion	System Setup			Units	
System Type Serial Number Firmware Version	RS-M9 2457 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	351. 0.0 3.5 Mid-See 	9	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calcu	lation Se	ettings		Dischar	ge Uncertainty	
Track Reference Depth Reference		System (default) Vertical Beam		Category Depth	ISO 0.10%	6 0.54%
Discharge Resul Total Area	ts		77.218	Velocity Width	0.199 0.109	
Mean Velocity Total Width Total Q Maximum Measured	l Depth(r	n)	0.050 33.000 3.859 3.088	Instrume		% % 0.25%
Maximum Measured Mean Flow Angle Rated Discharge % difference Q		·	0.081 13.479 3.588 7.544			
Water Temperature Mean Water Tempe Mean Weighted Gau	rature		18.000 18.307 0.000			

Discharge Measurement Summary Recorded file is located under My Documents/SonTek Data/YYYY MM DD/StationaryDataFiles

Recorded file is loca	ated unde	er My Documents SonTek Da					
Site Information	n		Measurement Information				
Site Name		Narrandera 240523	Party			PN	
Station Number 410127		Boat/Motor			M9		
Location	Location cway		Meas. Number			127	
System Informa	ition	System Setup			Units		
System Type	RS-M9	Tagline Azimuth (deg)	353.	3	Distance	m	
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	11.3	3	Area	m2	
		Discharge Method	Mid-Sec	tion	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
		Temperature (C)	11.0	0			
Discharge Calculation Settings		ettings		Discharge Uncertainty			
Track Reference		System (default)		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth	0.10%	0.31%	
Discharge Resu	lts			Velocity	0.07%	0.82%	
Total Area			73.193	Width	0.10%	0.10%	
Mean Velocity			0.146	# Cells	0.10%		
Total Width			32.000	# Stations 1.48%			
Total Q			10.651	Instrumer		0.25%	
Maximum Measure	d Depth(I	n)	2.992	Overall	1.51%	0.91%	
Maximum Measure	d Velocity	/(m/s)	0.210				
Mean Flow Angle			-0.237				
Rated Discharge			11.330				
% difference Q			-5.989				
Water Temperature	e (Indepe	ndent)	11.200				
Mean Water Tempe	erature		11.585				
Mean Weighted Ga	uge Heig	ht	0.000				

8.0 410129 STURT CANAL @ OFFTAKE

8.1 Measurement Summary

Meas No.	Date	Time	Calibration Measurements Q, Measured Discharge (Ml/day)	AFFRA Sensor Q, (Ml/day)	Deviation
139	13/12/2022	14:45	857.434	962.496	-10.919
140	25/01/2023	15:38	1068.077	1007.424	6.019
141	21/02/2023	12:42	1516.493	1463.616	3.613
142	18/04/2023	12:03	160.704	170.541	-5.724
143	23/05/2023	11:22	264.211	290.532	-8.982

Discharge Measurement Summary

Date Measured: Tuesday, December 13, 2022

Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Site Information	n		Measurement Information				
Site Name		Sturt offtake	Party	Sh			
Station Number		410129	Boat/Motor			M9	
Location Cbaleway		Meas. Number			139		
System Informa	ation	System Setup			Units		
System Type	RS-M9	Tagline Azimuth (deg)	336.	0	Distance	m	
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	11.1	4	Area	m2	
		Discharge Method	Mid-See	ction	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
Discharge Calcu	Iation S	ettings		Dischar	ge Uncertainty		
Track Reference		System (default)		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth	0.11%	0.60%	
Discharge Resu	lts			Velocity	0.11%	1.37%	
Total Area			51.006	Width	0.11%	0.11%	
Mean Velocity			0.195	# Cells	0.11%		
Total Width			28.000	# Station			
Total Q			9.924	Instrumer		0.25%	
Maximum Measure	d Depth(I	m)	2.606	Overall	1.74%	1.52%	
Maximum Measure	d Velocity	/(m/s)	0.278				
Mean Flow Angle			-3.696				
Rated Discharge		11.140					
% difference Q		-10.919					
Water Temperature	e (Indepe	ndent)	22.000				
Mean Water Tempe	erature		21.009				
Mean Weighted Ga	uge Heig	ht	0.000				

Recorded the is located i	mue	r My Documents\SonTek Dat	a YYYY_MM_DD Sta	ationaryDat	ariles	
Site Information			Measurement 1	nformatio	n	
Site Name Station Number Location		Sturt Offtake 410129 CW	Party Boat/Motor Meas. Number			SH M9 140
System Information		System Setup			Units	
System TypeRS-Serial Number24Firmware Version4.	57	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	333 0.0 11.6 Mid-Se 	6	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC
Discharge Calculatio	n Se	ettings		Dischar	ge Uncertainty	
Track Reference Depth Reference		System (default) Vertical Beam		Category Depth	ISO 0.109	% 0.88%
Discharge Results				Velocity	0.099	
Total Area Mean Velocity Total Width Total Q Maximum Measured Dep	oth(n	n)	66.218 0.187 29.000 12.362 3.156			% % % 0.25%
Maximum Measured Velocity(m/s) Mean Flow Angle Rated Discharge			0.282 -0.803 11.660			
% difference Q Water Temperature (Independent) Mean Water Temperature Mean Weighted Gauge Height			6.019 0.000 25.537 0.000			

Discharge Measurement Summary

Date Measured: Tuesday, February 21, 2023

Recorded file is located und	er My Documents SonTek Dat	a YYYY_MM_DD Sta	tionaryDate	aFiles		
Site Information		Measurement Information				
Site Name Sturt Offtake Station Number 410129 Location cableway		Party Boat/Motor Meas. Number			PN/TG M9 141	
System Information	System Setup			Units		
System Type RS-M9 Serial Number 2457 Firmware Version 4.10	Tagline Azimuth (deg) Salinity (ppt) Rated Discharge (m3/s) Discharge Method Measurement Quality	333. 0.0 16.9 Mid-Sec 	4	Distance Velocity Area Discharge Temperature	m m/s m2 m3/s degC	
Discharge Calculation S	Settings		Discharge Uncertainty			
Track Reference Depth Reference	System (default) Vertical Beam		Category Depth	ISO 0.11%		
Discharge Results			Velocity 0.0			
Total Area Mean Velocity Total Width Total Q Maximum Measured Depth(m)	62.871 0.279 28.000 17.552 3.071	Width # Cells # Stations Instrumen Overall		 0.25%	
Maximum Measured Velocit Mean Flow Angle Rated Discharge	0.408 -3.115 16.940					
% difference Q Water Temperature (Indep Mean Water Temperature	3.613 0.000 25.316					
Mean Weighted Gauge Heig	ht	0.000				

Discharge Measurement Summary Date Measured: Tuesday, April 18, 2023

Recorded file is located under Mv Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

Recorded file is located under My Documents[SonTek Data] YYYY_MM_DD[StationaryDataFiles							
Site Information			Measurement Information				
Site Name Sturt O/take		Party			PN/SM		
Station Number 410129		Boat/Motor			M9		
Location		cableway	Meas. Number			142	
System Informa	tion	System Setup			Units		
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m	
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	1.97	7	Area	m2	
		Discharge Method	Mid-Sec	tion	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
Discharge Calculation Settings			Dischar	ge Uncertainty			
Track Reference		System (default)		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth	0.11%	0.53%	
Discharge Resul	ts			Velocity 0.19%			
Total Area			56.392	Width	0.11%		
Mean Velocity			0.033	# Cells 0.119			
Total Width			30.000	# Stations 1.56%			
Total Q			1.860				
Maximum Measured	l Depth(i	m)	2.736	Overall	1.60%	2.40%	
Maximum Measured	Velocity	/(m/s)	0.063				
Mean Flow Angle			6.304				
Rated Discharge			1.970				
% difference Q			-5.598				
	Water Temperature (Independent)						
Mean Water Tempe			18.014				
Mean Weighted Ga	uge Heig	ht	0.000				

Date Measured: Tuesday, May 23, 2023

Discharge Measurement Summary

Recorded file is located under My Documents|SonTek Data|YYYY_MM_DD|StationaryDataFiles

		er my Documents Sonrek Da		, , ,			
Site Information	1		Measurement Information				
Site Name		Sturt Offtake	Party	PN			
Station Number		410129	Boat/Motor			M9	
Location cableway		Meas. Number		143			
System Informa	tion	System Setup			Units		
System Type	RS-M9	Tagline Azimuth (deg)	333.	0	Distance	m	
Serial Number	2457	Salinity (ppt)	0.0		Velocity	m/s	
Firmware Version	4.10	Rated Discharge (m3/s)	3.36	5	Area	m2	
		Discharge Method	Mid-Sec	tion	Discharge	m3/s	
		Measurement Quality			Temperature	degC	
Discharge Calcu	lation S	ettings		Dischar	rge Uncertainty		
Track Reference		System (default)		Category	ISO	Stats	
Depth Reference		Vertical Beam		Depth	0.11%	0.40%	
Discharge Resu	ts			Velocity 0.14%		1.23%	
Total Area			53.492	Width	0.11%	0.11%	
Mean Velocity			0.057	# Cells	0.11%		
Total Width			29.000	# Stations 1.60%			
Total Q			3.058	Instrument 0.25%		0.25%	
Maximum Measured	d Depth(m)	2.663	Overall	1.64%	1.32%	
Maximum Measured	d Velocit	y(m/s)	0.091				
Mean Flow Angle			10.568				
Rated Discharge			3.360				
% difference Q			-8.982				
Water Temperature	e (Indepe	ndent)	11.000				
Mean Water Tempe	erature		10.608				
Mean Weighted Ga	uge Heig	ht	0.000				

END OF REPORT